Datasheet
Table Of Contents
- Cover
- Notes regarding these materials
- General Precautions on Handling of Product
- Configuration of This Manual
- Preface
- Contents
- Figures
- Tables
- Section 1 Overview
- Section 2 CPU
- Section 3 Exception Handling
- Section 4 Interrupt Controller
- 4.1 Features
- 4.2 Input/Output Pins
- 4.3 Register Descriptions
- 4.3.1 Interrupt Edge Select Register (IEGR)
- 4.3.2 Wakeup Edge Select Register (WEGR)
- 4.3.3 Interrupt Enable Register 1 (IENR1)
- 4.3.4 Interrupt Enable Register 2 (IENR2)
- 4.3.5 Interrupt Request Register 1 (IRR1)
- 4.3.6 Interrupt Request Register 2 (IRR2)
- 4.3.7 Wakeup Interrupt Request Register (IWPR)
- 4.3.8 Interrupt Priority Registers A to F (IPRA to IPRF)
- 4.3.9 Interrupt Mask Register (INTM)
- 4.4 Interrupt Sources
- 4.5 Interrupt Exception Handling Vector Table
- 4.6 Operation
- 4.7 Usage Notes
- Section 5 Clock Pulse Generator
- 5.1 Register Description
- 5.2 System Clock Generator
- 5.3 Subclock Generator
- 5.4 Prescalers
- 5.5 Usage Notes
- 5.5.1 Note on Resonators and Resonator Circuits
- 5.5.2 Notes on Board Design
- 5.5.3 Definition of Oscillation Stabilization Wait Time
- 5.5.4 Note on Subclock Stop State
- 5.5.5 Note on the Oscillation Stabilization of Resonators
- 5.5.6 Note on Using On-Chip Power-On Reset
- 5.5.7 Note on Using the On-Chip Emulator
- Section 6 Power-Down Modes
- 6.1 Register Descriptions
- 6.2 Mode Transitions and States of LSI
- 6.3 Direct Transition
- 6.3.1 Direct Transition from Active (High-Speed) Mode to Active (Medium-Speed) Mode
- 6.3.2 Direct Transition from Active (High-Speed) Mode to Subactive Mode
- 6.3.3 Direct Transition from Active (Medium-Speed) Mode to Active (High-Speed) Mode
- 6.3.4 Direct Transition from Active (Medium-Speed) Mode to Subactive Mode
- 6.3.5 Direct Transition from Subactive Mode to Active (High-Speed) Mode
- 6.3.6 Direct Transition from Subactive Mode to Active (Medium-Speed) Mode
- 6.3.7 Notes on External Input Signal Changes before/after Direct Transition
- 6.4 Module Standby Function
- 6.5 Usage Notes
- Section 7 ROM
- Section 8 RAM
- Section 9 I/O Ports
- Section 10 Realtime Clock (RTC)
- 10.1 Features
- 10.2 Input/Output Pin
- 10.3 Register Descriptions
- 10.3.1 Second Data Register/Free Running Counter Data Register (RSECDR)
- 10.3.2 Minute Data Register (RMINDR)
- 10.3.3 Hour Data Register (RHRDR)
- 10.3.4 Day-of-Week Data Register (RWKDR)
- 10.3.5 RTC Control Register 1 (RTCCR1)
- 10.3.6 RTC Control Register 2 (RTCCR2)
- 10.3.7 Clock Source Select Register (RTCCSR)
- 10.3.8 RTC Interrupt Flag Register (RTCFLG)
- 10.4 Operation
- 10.5 Interrupt Sources
- 10.6 Usage Notes
- Section 11 Timer C
- Section 12 Timer F
- Section 13 Timer G
- Section 14 16-Bit Timer Pulse Unit (TPU)
- 14.1 Features
- 14.2 Input/Output Pins
- 14.3 Register Descriptions
- 14.3.1 Timer Control Register (TCR)
- 14.3.2 Timer Mode Register (TMDR)
- 14.3.3 Timer I/O Control Register (TIOR)
- 14.3.4 Timer Interrupt Enable Register (TIER)
- 14.3.5 Timer Status Register (TSR)
- 14.3.6 Timer Counter (TCNT)
- 14.3.7 Timer General Register (TGR)
- 14.3.8 Timer Start Register (TSTR)
- 14.3.9 Timer Synchro Register (TSYR)
- 14.4 Interface to CPU
- 14.5 Operation
- 14.6 Interrupt Sources
- 14.7 Operation Timing
- 14.8 Usage Notes
- 14.8.1 Module Standby Function Setting
- 14.8.2 Input Clock Restrictions
- 14.8.3 Caution on Period Setting
- 14.8.4 Contention between TCNT Write and Clear Operation
- 14.8.5 Contention between TCNT Write and Increment Operation
- 14.8.6 Contention between TGR Write and Compare Match
- 14.8.7 Contention between TGR Read and Input Capture
- 14.8.8 Contention between TGR Write and Input Capture
- 14.8.9 Contention between Overflow and Counter Clearing
- 14.8.10 Contention between TCNT Write and Overflow
- 14.8.11 Multiplexing of I/O Pins
- 14.8.12 Interrupts when Module Standby Function is Used
- 14.8.13 Output Conditions for 0% Duty and 100% Duty
- Section 15 Asynchronous Event Counter (AEC)
- Section 16 Watchdog Timer
- Section 17 Serial Communications Interface 3 (SCI3, IrDA)
- 17.1 Features
- 17.2 Input/Output Pins
- 17.3 Register Descriptions
- 17.3.1 Receive Shift Register (RSR)
- 17.3.2 Receive Data Register (RDR)
- 17.3.3 Transmit Shift Register (TSR)
- 17.3.4 Transmit Data Register (TDR)
- 17.3.5 Serial Mode Register (SMR)
- 17.3.6 Serial Control Register (SCR)
- 17.3.7 Serial Status Register (SSR)
- 17.3.8 Bit Rate Register (BRR)
- 17.3.9 Serial Port Control Register (SPCR)
- 17.3.10 Serial Port Control Register 2 (SPCR2)
- 17.3.11 IrDA Control Register (IrCR)
- 17.3.12 Serial Extended Mode Register (SEMR)
- 17.4 Operation in Asynchronous Mode
- 17.5 Operation in Clock Synchronous Mode
- 17.6 Multiprocessor Communication Function
- 17.7 IrDA Operation
- 17.8 Interrupt Requests
- 17.9 Usage Notes
- 17.9.1 Break Detection and Processing
- 17.9.2 Mark State and Break Sending
- 17.9.3 Receive Error Flags and Transmit Operations (Clock Synchronous Mode Only)
- 17.9.4 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode
- 17.9.5 Note on Switching SCK3 Pin Function
- 17.9.6 Relation between Writing to TDR and Bit TDRE
- 17.9.7 Relation between RDR Reading and bit RDRF
- 17.9.8 Transmit and Receive Operations when Making State Transition
- 17.9.9 Setting in Subactive or Subsleep Mode
- 17.9.10 Oscillator when Serial Communications Interface 3 is Used
- Section 18 Serial Communication Interface 4 (SCI4)
- Section 19 14-Bit PWM
- Section 20 A/D Converter
- Section 21 LCD Controller/Driver
- Section 22 I2C Bus Interface 2 (IIC2)
- 22.1 Features
- 22.2 Input/Output Pins
- 22.3 Register Descriptions
- 22.3.1 I2C Bus Control Register 1 (ICCR1)
- 22.3.2 I2C Bus Control Register 2 (ICCR2)
- 22.3.3 I2C Bus Mode Register (ICMR)
- 22.3.4 I2C Bus Interrupt Enable Register (ICIER)
- 22.3.5 I2C Bus Status Register (ICSR)
- 22.3.6 Slave Address Register (SAR)
- 22.3.7 I2C Bus Transmit Data Register (ICDRT)
- 22.3.8 I2C Bus Receive Data Register (ICDRR)
- 22.3.9 I2C Bus Shift Register (ICDRS)
- 22.4 Operation
- 22.5 Interrupt Request
- 22.6 Bit Synchronous Circuit
- 22.7 Usage Notes
- 22.7.1 Note on Issuing Stop Condition and Start (Re-Transmit) Condition
- 22.7.2 Note on Setting WAIT Bit in I2C Bus Mode Register (ICMR)
- 22.7.3 Restriction on Transfer Rate Setting in Multimaster Operation
- 22.7.4 Restriction on the Use of Bit Manipulation Instructions for MST and TRS Setting in Multimaster Operation
- 22.7.5 Usage Note on Master Receive Mode
- Section 23 Power-On Reset Circuit
- Section 24 Address Break
- Section 25 List of Registers
- Section 26 Electrical Characteristics
- Appendix
- Main Revisions and Additions in this Edition
- Index
- Colophon
- Address List
- Back Cover

Section 6 Power-Down Modes
Rev. 2.00 Jul. 04, 2007 Page 116 of 692
REJ09B0309-0200
6.2.1 Sleep Mode
In sleep mode, CPU operation is halted but the system clock oscillator, on-chip oscillator for the
system clock, subclock oscillator, and on-chip peripheral modules continues operating. In sleep
(medium-speed) mode, the on-chip peripheral modules function at the clock frequency set by the
MA1 and MA0 bits in SYSCR1. CPU register contents are retained.
Sleep mode is cleared by an interrupt. When an interrupt is requested, sleep mode is cleared and
interrupt exception handling starts. Sleep mode is not cleared if the I bit in CCR is set to 1 or the
requested interrupt is disabled by the interrupt enable bit. After sleep mode is cleared, a transition
is made from sleep (high-speed) mode to active (high-speed) mode or from sleep (medium-speed)
mode to active (medium-speed) mode.
When the RES pin goes low, the CPU goes into the reset state and sleep mode is cleared. Since an
interrupt request signal is synchronous with the system clock, the maximum time of 2/φ (s) may be
delayed from the point at which an interrupt request signal occurs until the interrupt exception
handling is started.
6.2.2 Standby Mode
In standby mode, the system clock oscillator and on-chip oscillator for the system clock is halted,
so the CPU and on-chip peripheral modules except for WDT and asynchronous event counter stop
functioning. However, as long as the rated voltage is supplied, the contents of CPU registers and
some on-chip peripheral module registers are retained. On-chip RAM contents will be retained as
long as the voltage set by the RAM data retention voltage is provided. The I/O ports go to the
high-impedance state.
Standby mode is cleared by an interrupt. When an interrupt is requested, the system clock
oscillator and on-chip oscillator for the system clock start. After the time set in the STS2 to STS0
bits in SYSCR1 and the STS3 bit in SYSCR3 has elapsed, standby mode is cleared and interrupt
exception handling starts. After standby mode is cleared, a transition is made to active (high-
speed) or active (medium-speed) mode according to the MSON bit in SYSCR2. Standby mode is
not cleared if the I bit in CCR is set to 1 or the requested interrupt is disabled by the interrupt
enable bit.
When a reset source is generated in standby mode, the system clock oscillator and the on-chip
oscillator for the system clock start. The RES pin must be kept low until the system clock
oscillator output stabilizes and the t
REL
period has elapsed. The CPU starts reset exception handling
when the RES pin is driven high.










