User Manual Owner's manual
Table Of Contents
- ArmorStart Distributed Motor Controller with EtherNet/IP User Manual
- European Communities (EC) Directive Compliance
- Table of Contents
- Chapter 1
- Product Overview
- Introduction
- Description
- Catalog Number Explanation
- Operation
- Mode of Operation
- Description of Features
- Embedded Switch Technology
- Switched vs. Unswitched Control Power Input/Output (I/O) Connections
- EtherNet/IP™ Ports
- Embedded Web Server
- EtherNet/IP LED Status Indication
- Control Module LED Status and Reset
- Electronic Data Sheet (EDS)
- Fault Diagnostics
- Standard Features
- Factory-Installed Options
- Optional HOA Keypad Configuration (Bulletin 280E/281E only)
- Optional HOA Selector Keypad with Jog Function (Bulletin 284E only)
- Source Brake Contactor and Connector (Bulletin 284E only)
- EMI Filter (Bulletin 284E only)
- Dynamic Brake Connector (Bulletin 284E only)
- IP67 Dynamic Brake Resistor (Bulletin 284E only)
- Output Contactor (Bulletin 284E only)
- Shielded Motor Cable (Bulletin 284E only)
- ArmorStart® EtherNet/ IP Features
- Notes:
- Product Overview
- Chapter 2
- Installation and Wiring
- Receiving
- Unpacking
- Inspecting
- Storing
- General Precautions
- Precautions for Bulletin 280E/281E Applications
- Precautions for Bulletin 284E Applications
- Dimensions
- Mount Orientation
- Operation
- Wiring
- Terminal Designations
- Control Power Wiring
- ArmorStart with EtherNet/IP Internal Wiring
- AC Supply Considerations for Bulletin 284E Units
- Electromagnetic Compatibility (EMC)
- Grounding
- ArmorConnect Power Media
- ArmorConnect Connections
- ArmorConnect Cable Ratings
- Ethernet and I/O Connections
- Power Connections
- Optional Locking Clip
- Installation and Wiring
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Bulletin 280E/281E/284E Programmable Parameters
- Basic Setup Parameters
- Parameter Groups
- ArmorStart EtherNet/IP Parameters
- Bulletin 280E/281E
- Bulletin 284E
- Basic Status Group
- Produced Assembly Config Group
- Starter Protection Group
- User I/O Configuration Group
- Miscellaneous Configuration Group
- Drive I/O Configuration Group (Bulletin 284E only)
- Drive Display Group (Bulletin 284E only)
- Drive Setup Group (Bulletin 284E only)
- Drive Advanced Setup Group (Bulletin 284E only)
- Clear a Type 1 Fault and Restart the Drive
- Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive
- How StepLogic Works
- StepLogic Settings
- Linear List of Parameters for Bulletin 280E/281E and Bulletin 284E
- Bulletin 280E/281E/284E Programmable Parameters
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Appendix A
- Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
- Introduction
- ArmorStart LT Product Family
- Multiple-Motor Branch Circuits and Motor Controllers Listed for Group Installation – General
- Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2)
- Explanatory Example
- Input and Output Conductors of Bulletin 290E and 291E Controllers (a)
- Input and Output Conductors of Bulletin 294E Controllers (b)
- Combined Load Conductors (c)
- Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
- Appendix B
- CIP Information
- High Level Product Description
- CIP Explicit Connection Behavior
- CIP Object Requirements
- Identity Object
- Assembly Object
- Connection Manager Object
- Discrete Input Point Object
- Discrete Output Point Object
- Parameter Object
- Parameter Group Object
- Discrete Input Group Object
- Discrete Output Group Object
- Control Supervisor Object
- Overload Object
- Device Level Ring (DLR) Object
- Qos Object
- DPI Fault Object
- DPI Alarm Object
- Interface Object
- TCP/IP Interface Object
- Ethernet Link Object
- CIP Information
- Appendix C
- Using DeviceLogix
- DeviceLogix Programming
- DeviceLogix Programming Example
- Import and Export
- Bulletin 284 - VFD Preset Speed Example
- DeviceLogix Ladder Editor Example
- ArmorStart 280 and 281 Status Bits
- Bulletin 280 and 281 ArmorStart Fault Bits
- Bulletin 280 and 281 ArmorStart Outputs
- Bulletin 280 and 281 ArmorStart Produced Network Bits
- Bulletin 284 ArmorStart Status Bits
- Bulletin 284 ArmorStart Fault Bits
- Bulletin 284 ArmorStart Outputs
- Bulletin 284 ArmorStart Produced Network Bits
- Using DeviceLogix
- Appendix D
- Appendix E
- Appendix F
- Back Cover

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012 269
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery Appendix A
Figure 97 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit
Explanatory Example
The example addresses the overcurrent protection of the conductors, controllers
and motors. Protection for three overcurrent conditions is considered: motor
running overloads, short-circuit (line-to-line) faults, and ground-faults (line-to-
ground). The short-circuit fault and ground-fault protection is governed by
7.2.10.4(1) and 7.2.10.4(2) and explained in Requirements 1,2 and 3 and
Figure 98
. The overload protection,explained in Requirement 4, is governed by
7.3.1 and 7.3.1.1. Overload coordination depends on each conductor having the
minimum ampacity given by 12.5.3 and 12.5.4. The method for determining this
minimum ampacity is explained in Requirement 5 and Figure 99
.
The example branch circuit is shown in Figure 98
and Figure 99. The circuit
topology consists of a set of 10 AWG conductors that supply multiple sets of 14
AWG conductors. Each set of 14 AWG conductors supply a controller and
motor. These conductor sizes are chosen to be the smallest conductors that have
sufficient ampacity, without derating, for the loads each must carry. All of the
wiring is customer-supplied, rather than the ArmorConnect Power Media,
because all controllers have the Conduit Entrance Gland Plate Option. Fuses
protect the branch circuit.
The example addresses five basic requirements that the motor controllers, fuses
and conductors must satisfy. The letters in the circles on Figure 98
and Figure 99
are referenced in the explanations as letters in parentheses. Ellipses points (…)
are used to replace NFPA 79 text that is not applicable to the multiple-motor
branch circuit shown in Figure 98
and Figure 99. Unless indicated, all text is
from NFPA 79.
d
f
e
c
e
b
“...a single set
of fuses…”
“The rating or setting of the branch short-circuit
and ground-fault protection device does
not exceed the values in Table 7.2.10.4
for the smallest conductor in the circuit.”
Branch circuit (shown as dotted lines) –
all of the conductors on the load side
of the single set of fuses
“...shall be permitted to be connected to a single branch circuit…”
* Each controller is listed for group installation with the same specied maximum protection
Markings that satisfy
7.2.10.4(1)
“... and their control
equipment … ”
“Two or more motors ...”
a
“Each motor controller
and overload device is ...
listed for group
installation with specied
maximum branch-circuit
protection…”
½ HP
Bulletin 294
2 HP
Bulletin 294
5 HP
Bulletin 291
5 HP
Bulletin 290
1 HP
Bulletin 294
Overload
Class 10
Overload
Class 10
Overload
Class 10/15/20
Overload
Class 10/15/20
Overload
Class 10
Nameplate* Nameplate* Nameplate* Nameplate* Nameplate*
1/2 HP
FLC =
1.1 A**
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
5 HP
FLC =
7.6 A**
1 HP
FLC =
2.1 A**
“Suitable for Motor Group Installation”
Max. Ratings
5 KA 10 KA
45A 45A*
Sym. Amps RMS
Fuse
* Type CC, J and T fuses only