User Manual Owner's manual
Table Of Contents
- ArmorStart Distributed Motor Controller with EtherNet/IP User Manual
- European Communities (EC) Directive Compliance
- Table of Contents
- Chapter 1
- Product Overview
- Introduction
- Description
- Catalog Number Explanation
- Operation
- Mode of Operation
- Description of Features
- Embedded Switch Technology
- Switched vs. Unswitched Control Power Input/Output (I/O) Connections
- EtherNet/IP™ Ports
- Embedded Web Server
- EtherNet/IP LED Status Indication
- Control Module LED Status and Reset
- Electronic Data Sheet (EDS)
- Fault Diagnostics
- Standard Features
- Factory-Installed Options
- Optional HOA Keypad Configuration (Bulletin 280E/281E only)
- Optional HOA Selector Keypad with Jog Function (Bulletin 284E only)
- Source Brake Contactor and Connector (Bulletin 284E only)
- EMI Filter (Bulletin 284E only)
- Dynamic Brake Connector (Bulletin 284E only)
- IP67 Dynamic Brake Resistor (Bulletin 284E only)
- Output Contactor (Bulletin 284E only)
- Shielded Motor Cable (Bulletin 284E only)
- ArmorStart® EtherNet/ IP Features
- Notes:
- Product Overview
- Chapter 2
- Installation and Wiring
- Receiving
- Unpacking
- Inspecting
- Storing
- General Precautions
- Precautions for Bulletin 280E/281E Applications
- Precautions for Bulletin 284E Applications
- Dimensions
- Mount Orientation
- Operation
- Wiring
- Terminal Designations
- Control Power Wiring
- ArmorStart with EtherNet/IP Internal Wiring
- AC Supply Considerations for Bulletin 284E Units
- Electromagnetic Compatibility (EMC)
- Grounding
- ArmorConnect Power Media
- ArmorConnect Connections
- ArmorConnect Cable Ratings
- Ethernet and I/O Connections
- Power Connections
- Optional Locking Clip
- Installation and Wiring
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Bulletin 280E/281E/284E Programmable Parameters
- Basic Setup Parameters
- Parameter Groups
- ArmorStart EtherNet/IP Parameters
- Bulletin 280E/281E
- Bulletin 284E
- Basic Status Group
- Produced Assembly Config Group
- Starter Protection Group
- User I/O Configuration Group
- Miscellaneous Configuration Group
- Drive I/O Configuration Group (Bulletin 284E only)
- Drive Display Group (Bulletin 284E only)
- Drive Setup Group (Bulletin 284E only)
- Drive Advanced Setup Group (Bulletin 284E only)
- Clear a Type 1 Fault and Restart the Drive
- Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive
- How StepLogic Works
- StepLogic Settings
- Linear List of Parameters for Bulletin 280E/281E and Bulletin 284E
- Bulletin 280E/281E/284E Programmable Parameters
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Appendix A
- Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
- Introduction
- ArmorStart LT Product Family
- Multiple-Motor Branch Circuits and Motor Controllers Listed for Group Installation – General
- Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2)
- Explanatory Example
- Input and Output Conductors of Bulletin 290E and 291E Controllers (a)
- Input and Output Conductors of Bulletin 294E Controllers (b)
- Combined Load Conductors (c)
- Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery
- Appendix B
- CIP Information
- High Level Product Description
- CIP Explicit Connection Behavior
- CIP Object Requirements
- Identity Object
- Assembly Object
- Connection Manager Object
- Discrete Input Point Object
- Discrete Output Point Object
- Parameter Object
- Parameter Group Object
- Discrete Input Group Object
- Discrete Output Group Object
- Control Supervisor Object
- Overload Object
- Device Level Ring (DLR) Object
- Qos Object
- DPI Fault Object
- DPI Alarm Object
- Interface Object
- TCP/IP Interface Object
- Ethernet Link Object
- CIP Information
- Appendix C
- Using DeviceLogix
- DeviceLogix Programming
- DeviceLogix Programming Example
- Import and Export
- Bulletin 284 - VFD Preset Speed Example
- DeviceLogix Ladder Editor Example
- ArmorStart 280 and 281 Status Bits
- Bulletin 280 and 281 ArmorStart Fault Bits
- Bulletin 280 and 281 ArmorStart Outputs
- Bulletin 280 and 281 ArmorStart Produced Network Bits
- Bulletin 284 ArmorStart Status Bits
- Bulletin 284 ArmorStart Fault Bits
- Bulletin 284 ArmorStart Outputs
- Bulletin 284 ArmorStart Produced Network Bits
- Using DeviceLogix
- Appendix D
- Appendix E
- Appendix F
- Back Cover

Rockwell Automation Publication 280E-UM001B-EN-P - July 2012 275
Applying More Than One ArmorStart Motor Controller in a Single Branch Circuit on Industrial Machinery Appendix A
Input and Output Conductors
of Bulletin 290E and 291E
Controllers (a)
For Bulletin 290E and 291E controllers, which use an electromechanical
contactor to control the motor, the input current, like the output current, is just
the current to the motor. Therefore, the minimum conductor ampacity for both
input and output conductors is 125 percent of the motor full-load current rating,
as specified in the text of 12.5.3 (a).
Referring to Figure 99
, the full-load current rating of a three-phase, 460 V, 5 Hp
induction motor is 7.6 amperes. Using this value, both the input and output
conductors must have an ampacity that is not less than 125% of 7.6 A or 9.5 A.
Input and Output Conductors
of Bulletin 294E Controllers
(b)
The Bulletin 294E controllers use a variable-frequency AC drive to control the
motor. These drives use a power conversion method that generates input currents
that are larger than the output currents. The input currents are larger because,
unlike the output currents to the motor, they are not sinusoidal. Consequently,
when determining the minimum ampacity of the input conductors, the
requirement of 12.5.3 must be based on the rated input current of the controller,
rather than the full-load current rating of the motor. Therefore, the minimum
ampacity of the input conductors must be 125% of the controller rated input
current, while that of the output conductors must be 125% of the motor full-load
current rating.
Referring to Figure 99
, the 1 Hp Bulletin 294E controller has a rated input
current of 3.0 amperes. Using the rated input current, the conductors from the
combined load conductors to the controllers must have an ampacity of 125%
of 3.0 A or 3.75 A. The output conductors must have an ampacity of 125% of
2.1 A or 2.6 A.
Combined Load Conductors
(c)
The requirement for the minimum ampacity of the combined load conductors
is given by 12.5.4. When the combined load conductors supply one or more
Bulletin 294E controllers, the minimum ampacity calculation of 12.5.4 must
be made by substituting the rated input current of the Bulletin 294E controllers
for the full-load current rating of the motors that these controllers supply.
In Figure 99
, the currents I1, I2, I3, I4 and I5 are the input currents to each
controller. I3 and I4 are the full-load current ratings of the 5 Hp motors. I1, I2
and I5 are the rated input currents of the Bulletin 294E controllers. Referring to
the explanatory text (c) in Figure 99
, the method for calculating the minimum
ampacity of the combined load conductors follows: first, multiply the largest
input current to any controller – Bulletin 290E, 291E or 294E - by 125%. In this
case, the input currents to the Bulletin 290E and 291E controllers, I3 and I4, are
the largest, 7.6 A. Because they are the same, either can be used. Choose I3 to
calculate 125% of the maximum. 125% of 7.6 A is 9.5 A. Second, sum the
remaining input currents (I1, I2, I4, I5) for a total of 17.9 A. Third, add the result
from the first step to the result from the second for a total of 27.4 A. Finally, the
minimum ampacity of the combined load conductors is 27.4 A.