User Manual

149
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. (See Table
18-3 on page 155). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by setting (or clearing) the OC2x Register at the compare match
between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in
the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1
timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the
polarity of the output set by the COM2A1:0 bits.)
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle
its logical level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum frequency
of f
oc2
= f
clk_I/O
/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the
double buffer feature of the Output Compare unit is enabled in the fast PWM mode.
18.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform gen-
eration option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly
from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A
when MGM2:0 = 7. In non-inverting Compare Output mode, the Output Compare (OC2x) is cleared on the com-
pare match between TCNT2 and OCR2x while upcounting, and set on the compare match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation
frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes,
these modes are preferred for motor control applications.
In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter
reaches TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The
timing diagram for the phase correct PWM mode is shown on Figure 18-7. The TCNT2 value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between
OCR2x and TCNT2.
f
OCnxPWM
f
clk_I/O
N 256
------------------=