User Manual
276
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
ware. When using the SPM interrupt, the Interrupt Vectors should be moved to the BLS section to avoid that an
interrupt is accessing the RWW section when it is blocked for reading. How to move the interrupts is described in
”Interrupts” on page 57.
27.8.5 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit11
unprogrammed. An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further soft-
ware updates might be impossible. If it is not necessary to change the Boot Loader software itself, it is
recommended to program the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.
27.8.6 Prevent Reading the RWW Section During Self-Programming
During Self-Programming (either Page Erase or Page Write), the RWW section is always blocked for reading. The
user software itself must prevent that this section is addressed during the self programming operation. The
RWWSB in the SPMCSR will be set as long as the RWW section is busy. During Self-Programming the Interrupt
Vector table should be moved to the BLS as described in ”Watchdog Timer” on page 50, or the interrupts must be
disabled. Before addressing the RWW section after the programming is completed, the user software must clear
the RWWSB by writing the RWWSRE. See ”Simple Assembly Code Example for a Boot Loader” on page 278 for
an example.
27.8.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits and general Lock Bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR.
See Table 27-2 and Table 27-3 for how the different settings of the Boot Loader bits affect the Flash access.
If bits 5...0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM instruction is exe-
cuted within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-pointer is don’t care during this
operation, but for future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used for read-
ing the lO
ck
bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when writing the
Lock bits. When programming the Lock bits the entire Flash can be read during the operation.
27.8.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the Fuses and Lock
bits from software will also be prevented during the EEPROM write operation. It is recommended that the user
checks the status bit (EEPE) in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.
27.8.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the Z-pointer with
0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU
cycles after the BLBSET and SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the des-
tination register. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock bits or if no
LPM instruction is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.
When BLBSET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.
The algorithm for reading the Fuse Low byte is similar to the one described above for reading the Lock bits. To
read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET and SPMEN bits in SPMCSR. When
Bit 76543210
R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1
Bit 76543210
Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1