Product Folder Sample & Buy Support & Community Tools & Software Technical Documents INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 INA219 Zerø-Drift, Bidirectional Current/Power Monitor With I2C Interface 1 Features 3 Description • • • • The INA219 is a current shunt and power monitor with an I2C- or SMBUS-compatible interface. The device monitors both shunt voltage drop and bus supply voltage, with programmable conversion times and filtering.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Related Products ................................................... Pin Configuration and Functions ...............
INA219 www.ti.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN VS Supply voltage UNIT 6 V –26 26 V -0.3 26 V SDA GND – 0.3 6 V SCL GND – 0.3 Analog Inputs IN+, IN– Differential (VIN+ – VIN–) (2) MAX Common-mode(VIN+ + VIN–) / 2 VS + 0.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 7.5 Electrical Characteristics: At TA = 25°C, VS = 3.3 V, VIN+ = 12V, VSHUNT = (VIN+ – VIN–) = 32 mV, PGA = /1, and BRNG (1) = 1, unless otherwise noted.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Electrical Characteristics: (continued) At TA = 25°C, VS = 3.3 V, VIN+ = 12V, VSHUNT = (VIN+ – VIN–) = 32 mV, PGA = /1, and BRNG(1) = 1, unless otherwise noted. PARAMETER INA219A TEST CONDITIONS MIN INA219B TYP Hysteresis MAX MIN 500 TYP UNIT MAX 500 mV OPEN-DRAIN DIGITAL OUTPUTS (SDA) Logic 0 output level ISINK = 3 mA High-level output leakage current VOUT = VS 0.15 0.4 0.15 0.4 V 0.1 1 0.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 7.7 Typical Characteristics 0 100 -10 80 -20 60 -30 40 Offset (mV) Gain (dB) At TA = 25°C, VS = 3.3 V, VIN+ = 12 V, VSHUNT = (VIN+ – VIN–) = 32 mV, PGA = /1, and BRNG = 1, unless otherwise noted.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Typical Characteristics (continued) At TA = 25°C, VS = 3.3 V, VIN+ = 12 V, VSHUNT = (VIN+ – VIN–) = 32 mV, PGA = /1, and BRNG = 1, unless otherwise noted. 2.0 1.2 VS+ = 5V 1.0 1.0 VS = 5V 0.8 0.5 IQ (mA) Input Currents (mA) 1.5 VS+ = 3V 0 VS+ = 3V 0.6 VS = 3V 0.4 -0.5 0.2 -1.0 VS+ = 5V 0 -1.5 10 5 0 15 20 25 30 0 -40 -25 25 VIN- Voltage (V) Figure 8.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 8 Detailed Description 8.1 Overview The INA219 is a digital current sense amplifier with an I2C- and SMBus-compatible interface. It provides digital current, voltage, and power readings necessary for accurate decision-making in precisely-controlled systems. Programmable registers allow flexible configuration for measurement resolution as well as continuous-versustriggered operation.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Feature Description (continued) VSHUNT = VIN+ - VINTypically < 50mV + - RSHUNT Supply Load INA219 Power-Supply Voltage 3V to 5.5V 3.3V Supply VIN+ VS VIN- INA219 ´ Power Register Data (SDA) Clock (SCL) 2 VBUS = VIN- - GND Current Register Range of 0V to 26V Typical Application 12V PGA ADC Voltage Register I C-/SMBUSCompatible Interface A0 A1 GND Figure 13.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 8.4 Device Functional Modes 8.4.1 Filtering and Input Considerations Measuring current is often noisy, and such noise can be difficult to define. The INA219 offers several options for filtering by choosing resolution and averaging in the Configuration register. These filtering options can be set independently for either voltage or current measurement.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com 8.5 Programming An important aspect of the INA219 device is that it measure current or power if it is programmed based on the system. The device measures both the differential voltage applied between the IN+ and IN- input pins and the voltage at IN- pin.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 Programming (continued) 8.5.2 Programming the Power Measurement Engine 8.5.2.1 Calibration Register and Scaling The Calibration Register enables the user to scale the Current Register (04h) and Power Register (03h) to the most useful value for a given application. For example, set the Calibration Register such that the largest possible number is generated in the Current Register (04h) or Power Register (03h) at the expected full-scale point.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Programming (continued) 8.5.5.1 Serial Bus Address To communicate with the INA219, the master must first address slave devices through a slave address byte. The slave address byte consists of seven address bits, and a direction bit indicating the intent of executing a read or write operation. The INA219 has two address pins, A0 and A1. Table 1 describes the pin logic levels for each of the 16 possible addresses.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 pointer. This byte is followed by an Acknowledge from the master; then the slave transmits the least significant byte. The master acknowledges receipt of the data byte. The master may terminate data transfer by generating a Not-Acknowledge after receiving any data byte, or generating a START or STOP condition.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 ALERT 1 9 1 9 SCL SDA 0 0 0 1 1 0 0 1 R/W Start By Master 0 0 A3 A2 ACK By INA219 A1 A0 0 From INA219 Frame 1 SMBus ALERT Response Address Byte Frame 2 Slave Address Byte NACK By Master Stop By Master (1) NOTE (1): The value of the Slave Address Byte is determined by the settings of the A0 and A1 pins. Refer to Table 1. Figure 17.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com 8.6 Register Maps 8.6.1 Register Information The INA219 uses a bank of registers for holding configuration settings, measurement results, maximum/minimum limits, and status information. Table 2 summarizes the INA219 registers; Functional Block Diagram shows registers. Register contents are updated 4 μs after completion of the write command.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 8.6.2 Register Details All INA219 16-bit registers are actually two 8-bit bytes through the I2C interface. 8.6.2.1 Configuration Register (address = 00h) [reset = 399Fh] Figure 19.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com SADC: SADC Shunt ADC Resolution/Averaging Bits 3–6 These bits adjust the Shunt ADC resolution (9-, 10-, 11-, or 12-bit) or set the number of samples used when averaging results for the Shunt Voltage Register (01h). BADC (Bus) and SADC (Shunt) ADC resolution/averaging and conversion time settings are shown in Table 5. Table 5.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 4. Complement the binary result : 000 0010 1111 1111 5. Add 1 to the Complement to create the Two’s Complement formatted result → 000 0011 0000 0000 6. Extend the sign and create the 16-bit word: 1000 0011 0000 0000 = 8300h (Remember to extend the sign to all sign-bits, as necessary based on the PGA setting.) At PGA = /8, full-scale range = ±320 mV (decimal = 32000).
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Table 7. Shunt Voltage Register Format (1) VSHUNT Reading (mV) Decimal Value PGA = /8 (D15:D0) PGA = /4 (D15:D0) PGA = /2 (D15:D0) PGA = /1 (D15:D0) 320.02 32002 0111 1101 0000 0000 0011 1110 1000 0000 0001 1111 0100 0000 0000 1111 1010 0000 320.01 32001 0111 1101 0000 0000 0011 1110 1000 0000 0001 1111 0100 0000 0000 1111 1010 0000 320.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 8.6.3.2 Bus Voltage Register (address = 02h) The Bus Voltage register stores the most recent bus voltage reading, VBUS. At full-scale range = 32 V (decimal = 8000, hex = 1F40), and LSB = 4 mV. Figure 24. Bus Voltage Register 15 BD12 14 BD11 13 BD10 12 BD9 11 BD8 10 BD7 9 BD6 8 BD5 7 BD4 6 BD3 5 BD2 4 BD1 3 BD0 2 — 1 CNVR 0 OVF At full-scale range = 16 V (decimal = 4000, hex = 0FA0), and LSB = 4 mV.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Figure 27. Calibration Register (1) 15 FS15 R/W-0 14 FS14 R/W-0 13 FS13 R/W-0 12 FS12 R/W-0 11 FS11 R/W-0 10 FS10 R/W-0 9 FS9 R/W-0 8 FS8 R/W-0 7 FS7 R/W-0 6 FS6 R/W-0 5 FS5 R/W-0 4 FS4 R/W-0 3 FS3 R/W-0 2 FS2 R/W-0 1 FS1 R/W-0 0 FS0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset (1) 24 FS0 is a void bit and will always be 0. It is not possible to write a 1 to FS0.
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com Typical Application (continued) For this example, the minimum-current LSB is calculated to be 457.78 µA/bit, assuming a maximum expected current of 15 A using Equation 2. This value is rounded up to 1 mA/bit and is chosen for the current LSB. Setting the current LSB to this value allows for sufficient precision while serving to simplify the math as well. Using Equation 1 results in a calibration value of 20480 (5000h).
INA219 www.ti.com SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 10 Power Supply Recommendations The input circuitry of the device can accurately measure signals on common-mode voltages beyond its power supply voltage, VS. For example, the voltage applied to the VS power supply terminal can be 5 V, whereas the load power-supply voltage being monitored (the common-mode voltage) can be as high as 26 V.
INA219 SBOS448G – AUGUST 2008 – REVISED DECEMBER 2015 www.ti.com 12 Device and Documentation Support 12.1 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.
PACKAGE OPTION ADDENDUM www.ti.
PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.
PACKAGE MATERIALS INFORMATION www.ti.com 8-Jan-2021 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) INA219AIDCNR SOT-23 DCN 8 3000 179.0 INA219AIDCNT SOT-23 DCN 8 250 INA219AIDR SOIC D 8 2500 INA219BIDCNR SOT-23 DCN 8 INA219BIDCNT SOT-23 DCN INA219BIDR SOIC D B0 (mm) K0 (mm) P1 (mm) 8.4 3.2 3.2 1.4 4.0 179.0 8.4 3.2 3.2 1.4 330.0 12.5 6.4 5.2 2.1 3000 179.
PACKAGE MATERIALS INFORMATION www.ti.com 8-Jan-2021 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) INA219AIDCNR SOT-23 DCN 8 3000 213.0 191.0 35.0 INA219AIDCNT SOT-23 DCN 8 250 213.0 191.0 35.0 INA219AIDR SOIC D 8 2500 340.5 338.1 20.6 INA219BIDCNR SOT-23 DCN 8 3000 213.0 191.0 35.0 INA219BIDCNT SOT-23 DCN 8 250 213.0 191.0 35.0 INA219BIDR SOIC D 8 2500 340.5 338.1 20.
PACKAGE OUTLINE D0008A SOIC - 1.75 mm max height SCALE 2.800 SMALL OUTLINE INTEGRATED CIRCUIT C SEATING PLANE .228-.244 TYP [5.80-6.19] A .004 [0.1] C PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .150 [3.81] .189-.197 [4.81-5.00] NOTE 3 4X (0 -15 ) 4 5 B 8X .012-.020 [0.31-0.51] .010 [0.25] C A B .150-.157 [3.81-3.98] NOTE 4 .069 MAX [1.75] .005-.010 TYP [0.13-0.25] 4X (0 -15 ) SEE DETAIL A .010 [0.25] .004-.010 [0.11-0.25] 0 -8 .016-.050 [0.41-1.27] DETAIL A (.041) [1.
EXAMPLE BOARD LAYOUT D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM SEE DETAILS 1 8 8X (.024) [0.6] 6X (.050 ) [1.27] SYMM 5 4 (R.002 ) TYP [0.05] (.213) [5.4] LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:8X METAL SOLDER MASK OPENING EXPOSED METAL .0028 MAX [0.07] ALL AROUND SOLDER MASK OPENING METAL UNDER SOLDER MASK EXPOSED METAL .0028 MIN [0.
EXAMPLE STENCIL DESIGN D0008A SOIC - 1.75 mm max height SMALL OUTLINE INTEGRATED CIRCUIT 8X (.061 ) [1.55] SYMM 1 8 8X (.024) [0.6] 6X (.050 ) [1.27] SYMM 5 4 (R.002 ) TYP [0.05] (.213) [5.4] SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.125 MM] THICK STENCIL SCALE:8X 4214825/C 02/2019 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9.
IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.