Integration Manual

Table Of Contents
TOBY-L3 series - System Integration Manual
TSD-19090601 - R13 System Integration Manual Page 70 of 143
C5 C8C7
C6 C9
GND
TOBY-L3 series
71
VCC
72
VCC
70
VCC
+
USB
Supply
C3
R4
θ
U1
IUSB
IAC
IEND
TPRG
SD
VIN
VINSNS
MODE
ISEL
C2
C1
5V0
TH
GND
VOUT
VOSNS
VREF
R1
R2
R3
Li-Ion/Li-Pol
Battery Pack
D1
B1
C4
Li-Ion/Li-Polymer
Battery Charger IC
D2
Figure 25: Li-Ion (or Li-Polymer) battery charging application circuit
Reference
Description
Part Number - Manufacturer
B1
Li-Ion (or Li-Polymer) battery pack with 470 NTC
Various manufacturer
C1, C4
1 µF Capacitor Ceramic X7R 0603 10% 16 V
GRM188R71C105KA12 - Murata
C2, C6
10 nF Capacitor Ceramic X7R 0402 10% 16 V
GRM155R71C103KA01 - Murata
C3
1 nF Capacitor Ceramic X7R 0402 10% 50 V
GRM155R71H102KA01 - Murata
C5
330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m
T520D337M006ATE045 - KEMET
C7
100 nF Capacitor Ceramic X7R 0402 10% 16 V
GRM155R61A104KA01 - Murata
C8
68 pF Capacitor Ceramic C0G 0402 5% 50 V
GRM1555C1H680JA01 - Murata
C9
15 pF Capacitor Ceramic C0G 0402 5% 50 V
GRM1555C1H150JA01 - Murata
D1, D2
Low Capacitance ESD Protection
CG0402MLE-18G - Bourns
R1, R2
24 k Resistor 0402 5% 0.1 W
RC0402JR-0724KL - Yageo Phycomp
R3
3.3 k Resistor 0402 5% 0.1 W
RC0402JR-073K3L - Yageo Phycomp
R4
1.0 k Resistor 0402 5% 0.1 W
RC0402JR-071K0L - Yageo Phycomp
U1
Single Cell Li-Ion (or Li-Polymer) Battery Charger IC
L6924U - STMicroelectronics
Table 21: Suggested components for Li-Ion (or Li-Polymer) battery charging application circuit
2.2.1.8 Guidelines for external charging and power path management circuit
Application devices where both a permanent primary supply / charging source (e.g. ~12 V) and a
rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as possible supply source
should implement a suitable charger / regulator with integrated power path management function to supply
the module and the whole device while simultaneously and independently charging the battery.
Figure 26 reports a simplified block diagram circuit showing the working principle of a charger / regulator
with an integrated power path management function. This component allows the system to be powered by
a permanent primary supply source (e.g. ~12 V) using the integrated regulator which simultaneously and
independently recharges the battery (e.g. 3.7 V Li-Pol) that represents the back-up supply source of the
system: the power path management feature permits the battery to supplement the system current
requirements when the primary supply source is not available or cannot deliver the peak system current.