Datasheet
www.ti.com
USING ADAPTERS WITH LARGE OUTPUT VOLTAGE RIPPLE
PCB LAYOUT CONSIDERATIONS
bq2406x
SLUS689A – JUNE 2006 – REVISED OCTOBER 2006
APPLICATION INFORMATION (continued)
• Whether other surfaces are in close proximity to the device being tested
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal
PowerFET. It can be calculated from the following equation when a battery pack is being charged :
P = [V(IN) – V(OUT)] × I(OUT)
Due to the charge profile of Li-Ion batteries the maximum power dissipation is typically seen at the beginning of
the charge cycle when the battery voltage is at its lowest. See the charging profile, Figure 13 .
If the board thermal design is not adequate the programmed fast charge rate current may not be achieved under
maximum input voltage and minimum battery voltage, as the thermal loop can be active effectively reducing the
charge current to avoid excessive IC junction temperature.
Some low cost adapters implement a half rectifier topology, which causes the adapter output voltage to fall
below the battery voltage during part of the cycle. To enable operation with low cost adapters under those
conditions the bq2406x family keeps the charger on for at least 30 msec (typical) after the input power puts the
part in sleep mode. This feature enables use of external low cost adapters using 50 Hz networks.
The backgate control circuit prevents any reverse current flowing from the battery to the adapter terminal during
the charger off delay time.
Note that the PG pin is not deglitched, and it indicates input power loss immediately after the input voltage falls
below the output voltage. If the input source frequently drops below the output voltage and recovers, a small
capacitor can be used from PG to VSS to prevent /PG flashing events.
It is important to pay special attention to the PCB layout. The following provides some guidelines:
• To obtain optimal performance, the decoupling capacitor from IN to GND (thermal pad) and the output filter
capacitors from OUT to GND (thermal pad) should be placed as close as possible to the bq2406x, with short
trace runs to both IN, OUT and GND (thermal pad).
• All low-current GND connections should be kept separate from the high-current charge or discharge paths
from the battery. Use a single-point ground technique incorporating both the small signal ground path and
the power ground path.
• The high current charge paths into IN pin and from the OUT pin must be sized appropriately for the
maximum charge current in order to avoid voltage drops in these traces.
• The bq2406x family are packaged in a thermally enhanced MLP package. The package includes a thermal
pad to provide an effective thermal contact between the IC and the printed circuit board (PCB); this thermal
pad is also the main ground connection for the device. Connect the thermal pad to the PCB ground
connection. Full PCB design guidelines for this package are provided in the application note entitled:
QFN/SON PCB Attachment Application Note (SLUA271 ).
27
Submit Documentation Feedback










