Datasheet
bq500410A
www.ti.com
SLUSB96 – NOVEMBER 2012
Principles of Operation
Fundamentals
The principle of wireless power transfer is simply an open cored transformer consisting of a transmitter and
receiver coils. The transmitter coil and electronics are typically built into a charger pad and the receiver coil and
electronics are typically built into a portable device, such as a cell-phone.
When the receiver coil is positioned on the transmitter coil, magnetic coupling occurs once the transmitter coil is
driven. The flux is coupled into the secondary coil which induces a voltage and current flows. The secondary
voltage is rectified, and power can be transferred effectively to a load, wirelessly. Power transfer can be
managed via any of various familiar closed-loop control schemes.
Wireless Power Consortium (WPC)
The Wireless Power Consortium (WPC) is an international group of companies from diverse industries. The WPC
Standard was developed to facilitate cross compatibility of compliant transmitters and receivers. The standard
defines the physical parameters and the communication protocol to be used in wireless power. For more
information, or to download a copy of the WPC specification, go to http://www.wirelesspowerconsortium.com/.
Power Transfer
Power transfer depends on coil coupling. Coupling is dependant on the distance between coils, alignment, coil
dimensions, coil materials, number of turns, magnetic shielding, impedance matching, frequency and duty cycle.
Most importantly, the receiver and transmitter coils must be aligned for best coupling and efficient power transfer.
The closer the space between the coils is, the better the coupling. However, the practical distance is set to be
less than 5 mm, as defined within the WPC Specification, to account for housing and interface surfaces.
Shielding is added as a backing to both the transmitter and receiver coils to direct the magnetic field to the
coupled zone. Magnetic fields outside the coupled zone do not transfer power. Thus, shielding also serves to
contain the fields to avoid coupling to other adjacent system components.
Regulation can be achieved by controlling any one of the coil coupling parameters. However, for WPC
compatibility, the transmitter-side coils and capacitance are specified and the resonant frequency point is fixed.
Power transfer is thus regulated by changing the frequency along the resonance curve from 112 kHz to 205 kHz,
(that is the higher the frequency is, the lower the power). Duty cycle remains constant at 50% throughout the
power band and is reduced only once 205 kHz is reached.
The WPC standard describes the dimensions, materials of the coils and information regarding the tuning of the
coils to resonance. The value of the inductor and resonant capacitor are critical to proper operation and system
efficiency.
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: bq500410A










