user manual
17-14 Applications
8317APPS.DOC TI-83 international English Bob Fedorisko Revised: 02/19/01 1:00 PM Printed: 02/19/01 1:39 PM
Page 14 of 20
Using the functions fnInt( and nDeriv( from the 
MATH
 menu
to graph functions defined by integrals and derivatives
demonstrates graphically that:
F(x) = 
‰
1
x
 1
à
t dt = ln(x), x > 0 and that
D
x
[
‰
1
x
 1
à
t dt
]
 = 1
à
x
1. Press 
z
. Select the default settings.
2. Press 
p
. Set the viewing window.
Xmin=.01 Ymin=
M
1.5 Xres=3
Xmax=10 Ymax=2.5
Xscl=1 Yscl=1
3. Press 
o
. Turn off all functions and stat plots. Enter the
numerical integral of 1
à
T from 1 to X and the function
ln(X). Set the graph style for 
Y
1
 to 
ç
 (line) and Y
2
 to
ë
 (path).
4. Press 
r
. Press 
|
, 
}
, 
~
, and 
†
 to compare the
values of 
Y
1
 and Y
2
.
5. Press 
o
. Turn off 
Y
1
 and Y
2
, and then enter the
numerical derivative of the integral of 1
à
X and the
function 1
à
X. Set the graph style for 
Y
3
 to 
ç
 (line) and Y
4
to 
è
 (thick).
6. Press 
r
. Again, use the cursor keys to compare the
values of the two graphed functions, 
Y
3
 and Y
4
.
Demonstrating the Fundamental Theorem of Calculus
Problem 1
Procedure 1










