Calculator User Manual
470      Appendix  A:  Functions  and  Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 470 of 132
mRowAdd()
MATH/Matrix/Row ops menu
mRowAdd(
expression
, 
matrix1
, 
index1
, 
index2
) 
⇒
matrix
Returns a copy of 
matrix1
 with each element
in row 
index2
 of 
matrix1
 replaced with:
expression
 × row 
index1
 + row 
index2
mRowAdd(
ë
3,[1,2;3,4],1,2)
¸
[
1
 2
0 L2
]
mRowAdd(n,[a,b;c,d],1,2)
¸
[
a 
a
ø
n+c
b
b
ø
n+d
]
nCr()
MATH/Probability menu
nCr(
expression1
, 
expression2
) 
⇒
expression
For integer 
expression1
 and
 expression2
 with
expression1
‚
expression2
‚
 0, 
nCr()
 is the
number of combinations of 
expression1
 things
taken 
expression2
 at a time. (This is also
known as a binomial coefficient.) Both
arguments can be integers or symbolic
expressions.
nCr(
expression,
 0
)
⇒
1
nCr(
expression, negInteger
)
⇒
0
nCr(
expression, posInteger
)
⇒
expression
ø
(
expression
ì
1)
...
(
expression
ì
posInteger
+1)/
 posInteger
!
nCr(
expression, nonInteger
)
⇒
expression
!/
((
expression
ì
nonInteger
)!
ø
nonInteger
!)
nCr(z,3)
z
ø
(z
ì
2)
ø
(z
ì
1)
6
ans(1)|z=5 10
nCr(z,c)
z!
c!(z
ì
c)!
ans(1)/nPr(z,c)
1
c!
nCr(
list1
,
 list2
) 
⇒
list
Returns a list of combinations based on the
corresponding element pairs in the two lists.
The arguments must be the same size list.
nCr({5,4,3},{2,4,2})
¸
{10 1 3}
nCr(
matrix1
, 
matrix2
) 
⇒
matrix
Returns a matrix of combinations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.
nCr([6,5;4,3],[2,2;2,2])
¸
[
15 10
6 3
]
nDeriv()
MATH/Calculus menu
nDeriv(
expression1
, 
var
[
, 
h
]
) 
⇒
expression
nDeriv(
expression1
, 
var, list
) 
⇒
list
nDeriv(
list
, 
var
[
, 
h
]
) 
⇒
list
nDeriv(
matrix
, 
var
[
, 
h
]
) 
⇒
matrix
Returns the numerical derivative as an
expression. Uses the central difference
quotient formula.
h
 is the step value. If 
h
 is omitted, it defaults
to 0.001.
When using 
list
 or 
matrix
, the operation gets
mapped across the values in the list or across
the matrix elements.
Note: See also 
avgRC()
 and d
()
.
nDeriv(cos(x),x,h)
¸
ë
(
cos
(
x
ì
h)
ì
cos
(
x+
h))
2
ø
h
limit(nDeriv(cos(x),x,h),h,0)
¸
ë
sin(x)
nDeriv(x^3,x,0.01)
¸
3.
ø
(
x
ñ
+.000033
)
nDeriv(cos(x),x)|x=p/2
¸
ë
1
.
nDeriv(x^2,x,{.01,.1}) 
¸
{
2.
ø
x 2.
ø
x
}










