Calculator User Manual
474      Appendix  A:  Functions  and  Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 474 of 132
nPr()
MATH/Probability menu
nPr(
expression1
, 
expression2
) 
⇒
expression
For integer 
expression1
 and
 expression2
 with
expression1
‚
expression2
‚
 0, 
nPr()
 is the
number of permutations of 
expression1
 things
taken 
expression2
 at a time. Both arguments
can be integers or symbolic expressions.
nPr(
expression,
 0
)
⇒
1
nPr(
expression, negInteger
)
⇒
1/((
expression
+1)
ø
(expression
+2)
...
(
expression
ì
negInteger
))
nPr(
expression, posInteger
)
⇒
expression
ø
(
expression
ì
1)
...
(
expression
ì
posInteger
+1)
nPr(
expression, nonInteger
)
⇒
expression
!/
(
expression
ì
nonInteger
)!
nPr(z,3)
¸
z
ø
(z
ì
2)
ø
(z
ì
1)
ans(1)|z=5
¸
60
nPr(z,
ë
3)
¸
1
(z+1)
ø
(z+2)
ø
(z+3)
nPr(z,c)
¸
z!
(z
ì
c)!
ans(1)
ù
nPr(z
ì
c,
ë
c)
¸
1
nPr(
list1
, 
list2
) 
⇒
list
Returns a list of permutations based on the
corresponding element pairs in the two lists.
The arguments must be the same size list.
nPr({5,4,3},{2,4,2})
¸
{20 24 6}
nPr(
matrix1
, 
matrix2
) 
⇒
matrix
Returns a matrix of permutations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.
nPr([6,5;4,3],[2,2;2,2])
¸
[
30 20
12 6
]
nSolve()
MATH/Algebra menu
nSolve(
equation
, 
varOrGuess
) 
⇒
number or
error_string
Iteratively searches for one approximate real
numeric solution to 
equation
 for its one
variable. Specify 
varOrGuess
 as:
variable
– or –
variable
 = 
real number
For example, 
x
 is valid and so is 
x=3
.
nSolve(x^2+5x
ì
25=9,x)
¸
3.844
...
nSolve(x^2=4,x=
ë
1)
¸
ë
2.
nSolve(x^2=4,x=1)
¸
2.
Note: If there are multiple solutions, you
can use a guess to help find a particular
solution.
nSolve()
 is often much faster than 
solve()
 or
zeros()
, particularly if the “|” operator is used
to constrain the search to a small interval
containing exactly one simple solution.
nSolve()
 attempts to determine either one
point where the residual is zero or two
relatively close points where the residual has
opposite signs and the magnitude of the
residual is not excessive. If it cannot achieve
this using a modest number of sample points,
it returns the string “
no solution found
.”
If you use 
nSolve()
 in a program, you can use
getType() 
to check for a numeric result before
using it in an algebraic expression.
Note: See also 
cSolve()
, 
cZeros()
, 
solve()
, and
zeros()
.
nSolve(x^2+5x
ì
25=9,x)|x<0
¸
ë
8.844
...
nSolve(((1+r)^24
ì
1)/r=26,r)|r>
0 and r<.25
¸
.0068
...
nSolve(x^2=
ë
1,x)
¸
"no so
l
ution foun
d
"










