Calculator User Manual
Appendix A: Functions and Instructions  797 
cot()  MATH/Trig menu 
cot(
expression1
) ⇒
⇒⇒
⇒ 
expression
cot(
list1
) ⇒
⇒⇒
⇒ 
list
Returns the cotangent of 
expression1
or returns a 
list of the cotangents of all elements in 
list1
. 
Note: The result is returned as a degree, gradian 
or radian angle, according to the current angle 
mode setting. 
In Degree angle mode: 
cot(45) ¸ 1 
In Gradian angle mode: 
cot(50) ¸ 1 
In Radian angle mode: 
cot({1,2.1,3}) ¸ 
 { 
1
tan(1)
 L.584… 
1
tan(3)
} 
cot
L
LL
L1
()  MATH/Trig menu 
cot
L
LL
L1
(
expression1
) ⇒
⇒⇒
⇒ 
expression
cot
L
LL
L1
(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the angle whose cotangent is 
expression1
 or returns a list containing the 
inverse cotangents of each element of 
list1
. 
Note: The result is returned as a degree, gradian 
or radian angle, according to the current angle 
mode setting. 
In Degree angle mode: 
cot
L1
(1) ¸  45 
In Gradian angle mode: 
cot
L1
(1) ¸  50 
In Radian angle mode: 
cot
L1
(1) ¸ 
p
4
coth()  MATH/Hyperbolic menu 
coth(
expression1
) ⇒
⇒⇒
⇒ 
expression 
cot(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the hyperbolic cotangent of 
expression1
or returns a list of the hyperbolic cotangents of all 
elements of 
list1
. 
coth(1.2) ¸  1.199… 
coth({1,3.2}) ¸ 
 {
1
tanh(1)
1.003…
}
coth
L
LL
L1
()  MATH/Hyperbolic menu 
coth
L
LL
L1
(
expression1
) ⇒
⇒⇒
⇒ 
expression 
coth
L
LL
L1
(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the inverse hyperbolic cotangent of 
expression1
 or returns a list containing the 
inverse hyperbolic cotangents of each element of 
list1
. 
coth
L1
(3.5) ¸  .293… 
coth
L1
({L2,2.1,6}) ¸ 
 { 
Lln(3)
2
.518… 
ln(7/5)
2
} 
crossP()  MATH/Matrix/Vector ops menu 
crossP(
list1
, 
list2
)  ⇒
⇒⇒
⇒ 
list
Returns the cross product of 
list1
 and 
list2
 as a list.
list1
 and 
list2
 must have equal dimension, and the 
dimension must be either 2 or 3. 
crossP({a1,b1},{a2,b2}) ¸ 
  {0 0 a1ø b2ì a2ø b1} 
crossP({0.1,2.2,ë 5},{1,ë.5,0})
 ¸ 
 {ë 2.5 ë 5. ë 2.25} 
crossP(
vector1
, 
vector2
)  ⇒
⇒⇒
⇒ 
vector
Returns a row or column vector (depending on 
the arguments) that is the cross product of 
vector1
and 
vector2
. 
Both 
vector1
 and 
vector2
 must be row vectors, or 
both must be column vectors. Both vectors must 
have equal dimension, and the dimension must 
be either 2 or 3. 
crossP([1,2,3],[4,5,6]) ¸ 
 [ë 3 6 ë 3] 
crossP([1,2],[3,4])
 ¸ 
 [0 0 ë 2] 










