Calculator User Manual
798  Appendix A: Functions and Instructions 
csc()  MATH/Trig menu 
csc(
expression1
) ⇒
⇒⇒
⇒ 
expression 
csc(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the cosecant of 
expression1
 or returns a 
list containing the cosecants of all elements in 
list1
. 
In Degree angle mode: 
csc(45) ¸  ‡2 
In Gradian angle mode: 
csc(50) ¸  ‡
‡‡
‡2
22
2 
In Radian angle mode: 
csc({1,p/2,p/3}) ¸ 
  { 
1
sin(1)
1 
2 ¦  3
3
} 
csc
L
LL
L1
()  MATH/Trig menu 
csc
-1
(
expression1
) ⇒
⇒⇒
⇒ 
expression 
csc
-1
(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the angle whose cosecant is 
expression1 
or returns a list containing the inverse cosecants 
of each element of 
list1
. 
Note: The result is returned as a degree, gradian 
or radian angle, according to the current angle 
mode setting. 
In Degree angle mode: 
csc
L1
(1) ¸  90 
In Gradian angle mode: 
csc
L1
(1) ¸  100 
In Radian angle mode: 
csc
L1
({1,4,6}) ¸ 
 { 
p
2
sin
L1
(1/4)
sin
L1
(1/6)
 } 
csch()  MATH/Hyperbolic menu 
csch(
expression1
) ⇒
⇒⇒
⇒ 
expression 
csch(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the hyperbolic cosecant of 
expression1
or 
returns a list of the hyperbolic cosecants of all 
elements of 
list1
. 
csch(3) ¸ 
1
sinh(3)
csch({1,2.1,4}) ¸ 
 { 
1
sinh(1)
.248… 
1
sinh(4)
} 
csch
L
LL
L1
()  MATH/Hyperbolic menu 
csch
L
LL
L1
(
expression1
) ⇒
⇒⇒
⇒ 
expression
csch
L
LL
L1
(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns the inverse hyperbolic cosecant of 
expression1
 or returns a list containing the 
inverse hyperbolic cosecants of each element of 
list1
. 
csch
 L1
(1) ¸  sinh
-1
(1) 
csch
L1
({1,2.1,3}) ¸ 
{sinh
L1
(1) .459… sinh
L1
(1/3)} 
cSolve()  MATH/Algebra/Complex menu 
cSolve(
equation
, 
var
)  ⇒
⇒⇒
⇒ 
Boolean expression
Returns candidate complex solutions of an 
equation for 
var
. The goal is to produce 
candidates for all real and non-real solutions. 
Even if 
equation
 is real, cSolve() allows non-real 
results in real mode. 
Although the TI-89 Titanium/Voyage™ 200 
processes all undefined variables that do not end 
with an underscore (_) as if they were real, 
cSolve() can solve polynomial equations for 
complex solutions. 
cSolve(x^3=ë 1,x) ¸ 
solve(x^3=ë 1,x) ¸ 










