Calculator User Manual
808  Appendix A: Functions and Instructions 
DelType   
DelType
 var_type
Deletes all unlocked variables of the type 
specified by 
var_type
. 
Note: Possible values for 
var_type
 are: 
ASM, DATA, EXPR, FUNC, GDB, LIST, MAT, PIC, 
PRGM, STR, TEXT, AppVar_type_name, All. 
 Deltype “LIST” ¸ Done 
DelVar  CATALOG 
DelVar 
var1
[, 
var2
] [, 
var3
] ... 
Deletes the specified variables from memory. 
2! a ¸ 2 
(a+2)^2
 ¸ 16 
DelVar a
 ¸ Done 
(a+2)^2
 ¸ (a + 2)ñ  
deSolve()  MATH/Calculus menu 
deSolve(
1stOr2ndOrderOde
, 
independentVar
, 
dependentVar
)  ⇒
⇒⇒
⇒ 
a general solution
Returns an equation that explicitly or implicitly 
specifies a general solution to the 1st- or 2nd-
order ordinary differential equation (ODE). In the 
ODE: 
•  Use a prime symbol ( '
 , press 2 È) to 
denote the 1st derivative of the dependent 
variable with respect to the independent 
variable. 
•  Use two prime symbols to denote the 
corresponding second derivative. 
The ' symbol is used for derivatives within 
deSolve() only. In other cases, use 
d
(). 
The general solution of a 1st-order equation 
contains an arbitrary constant of the form 
@k
, 
where 
k
 is an integer suffix from 1 through 255. 
The suffix resets to 1 when you use 
ClrHome or 
ƒ
8: Clear Home. The solution of a 2nd-order 
equation contains two such constants. 
Note: To type a prime symbol (
 ' ), press 
2
È. 
deSolve(y''+2y'+y=x^2,x,y)¸ 
 y=(
@
1øx+
@
2)ø
e
ë x
+xñì4øx+6 
right(ans(1))!temp ¸ 
 (
@
1øx+
@
2)ø
e
ë x
+xñì4øx+6 
d
(temp,x,2)+2ù
d
(temp,x)+tempìx^2 
¸ 0 
DelVar temp ¸ Done 
Apply solve() to an implicit solution if you want 
to try to convert it to one or more equivalent 
explicit solutions. 
deSolve(y'=(cos(y))^2ùx,x,y) ¸ 
 tan(y)= 
xñ
2
 +@3 
When comparing your results with textbook or 
manual solutions, be aware that different 
methods introduce arbitrary constants at different 
points in the calculation, which may produce 
different general solutions. 
solve(ans(1),y) ¸ 
 y=tanê
(
2
2@3
2
x
+ i
)
+@n1øp 
ans(1)|@3=cì1 and @n1=0 ¸ 
 y=tanê
(
x
xx
xñ +2
+2+2
+2ø(
((
(c
cc
cì 1
11
1)
))
)
2
22
2
)
deSolve(
1stOrderOde
 and 
initialCondition
, 
independentVar
, 
dependentVar
) 
  ⇒
⇒⇒
⇒ 
a particular solution
Returns a particular solution that satisfies 
1stOrderOde
 and 
initialCondition
. This is usually 
easier than determining a general solution, 
substituting initial values, solving for the arbitrary 
constant, and then substitutin
g
 that value into 
sin(y)=(yù
e
^(x)+cos(y))y'!ode ¸ 
 sin(y)=(
e
x
øy+cos(y))øy' 
deSolve(ode and y(0)=0,x,y)!soln 
¸
ë(2øsin(y)+yñ)
2
 =
==
=ë(
((
(
e
x
xx
x
ì1)
1)1)
1)ø
e
ëx
xx
x
øsin(y)
sin(y)sin(y)
sin(y) 










