Calculator User Manual
Appendix A: Functions and Instructions  809 
the general solution. 
initialCondition
 is an equation of the form: 
dependentVar
 (
initialIndependentValue
) = 
initialDependentValue
The 
initialIndependentValue
 and 
initialDependentValu
e
can be variables such as x0 and y0 that have no 
stored values. Implicit differentiation can help 
verify implicit solutions. 
soln|x=0 and y=0 ¸ true 
d
(right(eq)ìleft(eq),x)/ 
(
d
(left(eq)ìright(eq),y)) 
!impdif(eq,x,y) ¸ 
 Done 
ode|y'=impdif(soln,x,y) ¸ 
 true 
DelVar ode,soln ¸ Done 
deSolve(
2ndOrderOde
 and 
initialCondition1
 and 
initialCondition2
, 
independentVar
, 
dependentVar
)  ⇒
⇒⇒
⇒ 
a particular solution
Returns a particular solution that satisfies 
2ndOrderOde
 and has a specified value of the 
dependent variable and its first derivative at one 
point. 
deSolve(y''=y^(ë1/2) and y(0)=0 and 
y'(0)=0,t,y) ¸ 
2øy
3/4
3
 =t 
solve(ans(1),y) ¸ 
 y=
2
2/3
ø(3øt)
4/3
4
 and t‚0 
For 
initialCondition1
, use the form: 
dependentVar
 (
initialIndependentValue
) = 
initialDependentValue
For 
initialCondition2
, use the form: 
dependentVar
' (
initialIndependentValue
) = 
initial1stDerivativeValue
deSolve(
2ndOrderOde
 and 
boundaryCondition1
 and 
boundaryCondition2
, 
independentVar
, 
dependentVar
)  ⇒
⇒⇒
⇒ 
a particular solution
Returns a particular solution that satisfies 
2ndOrderOde
 and has specified values at two 
different points. 
deSolve(w''ì2w'/x+(9+2/x^2)w= 
xù
e
^(x) and w(p/6)=0 and 
w(p/3)=0,x,w) ¸ 
 w= 
e
p
3
øxøcos(3øx)
10
  ì
e
p
6
øxøsin(3øx)
10
 + 
x⋅
e
x
10
det()  MATH/Matrix menu 
det(
squareMatrix
[, 
tol
])  ⇒
⇒⇒
⇒ 
expression
Returns the determinant of 
squareMatrix
.
Optionally, any matrix element is treated as zero 
if its absolute value is less than 
tol
. This tolerance 
is used only if the matrix has floating-point 
entries and does not contain any symbolic 
variables that have not been assigned a value. 
Otherwise, 
tol
 is ignored. 
•  If you use ¥¸ or set the mode to 
Exact/Approx=APPROXIMATE, computations 
are done using floating-point arithmetic. 
•  If 
tol
 is omitted or not used, the default 
tolerance is calculated as: 
5Eë 14 ù max(dim(
squareMatrix
)) 
ù rowNorm(
squareMatrix
) 
det([a,b;c,d]) ¸ aød ìbøc 
det([1,2;3,4])
 ¸  ë2 
det(identity(3)
 ìxù[1,ë2,3; 
ë2,4,1;ë6,ë2,7])
 ¸ 
  ë(98øxòì55øxñ+
 12øx ì1) 
[1
E20,1;0,1]!mat1 [
1.E20 1
0 1
] 
det(mat1) ¸ 0 
det(mat1,.1) ¸ 1.
E20 










