Calculator User Manual
Appendix A: Functions and Instructions  823 
G[
n
][
c
]: Same as fixed format but also separates 
digits to the left of the radix into groups of three. 
c
 specifies the group separator character and 
defaults to a comma. If 
c
 is a period, the radix 
will be shown as a comma. 
[R
c
]: Any of the above specifiers may be suffixed 
with the 
R
c
 radix flag, where 
c
 is a single 
character that specifies what to substitute for the 
radix point. 
fPart()  MATH/Number menu 
fPart(
expression1
)  ⇒
⇒⇒
⇒ 
expression
fPart(
list1
)  ⇒
⇒⇒
⇒ 
list
fPart(
matrix1
)  ⇒
⇒⇒
⇒ 
matrix
Returns the fractional part of the argument. 
For a list or matrix, returns the fractional parts of 
the elements. 
The argument can be a real or a complex number.
fPart(ë 1.234) ¸  ë.234 
fPart({1, ë 2.3, 7.003})
 ¸ 
 {0  ë.3 .003} 
Func  CATALOG 
Func 
block
EndFunc 
Required as the first statement in a multi-
statement function definition. 
block
 can be either a single statement or a series 
of statements separated with the “:” character. 
Note: 
when() also can be used to define and 
graph piecewise-defined functions. 
In function graphing mode, define a piecewise 
function: 
Define g(x)=Func:If x<0 Then 
:Return 3ù cos(x):Else:Return 
3ì x:EndIf:EndFunc
 ¸ Done 
Graph g(x)
 ¸ 
gcd()  MATH/Number menu 
gcd(
number1, number2
)  ⇒
⇒⇒
⇒ 
expression
Returns the greatest common divisor of the two 
arguments. The 
gcd of two fractions is the gcd 
of their numerators divided by the 
lcm of their 
denominators. 
In Auto or Approximate mode, the 
gcd of 
fractional floating-point numbers is 1.0. 
gcd(18,33) ¸ 3 
gcd(
list1, list2
)  ⇒
⇒⇒
⇒ 
list
Returns the greatest common divisors of the 
corresponding elements in 
list1
 and 
list2
. 
gcd({12,14,16},{9,7,5}) ¸ 
  {3 7 1} 
gcd(
matrix1, matrix2
)  ⇒
⇒⇒
⇒ 
matrix
Returns the greatest common divisors of the 
corresponding elements in 
matrix1
 and 
matrix2
. 
gcd([2,4;6,8],[4,8;12,16]) ¸ 
 [
2 4
6 8
] 










