Calculator User Manual
Appendix A: Functions and Instructions  837 
@
@@
@list()  MATH/List menu   
list(
list1
) ⇒
⇒⇒
⇒ 
list 
Returns a list containing the differences between 
consecutive elements in
 list1
. Each element of
list1 
is subtracted from the next element of 
list1
. The 
resulting list is always one element shorter than 
the original 
list1
. 
@list({20,30,45,70}) ¸ 
 {10,15,25} 
list4
44
4mat()  MATH/List menu 
list4
44
4mat(
list
 [, 
elementsPerRow
])  ⇒
⇒⇒
⇒ 
matrix
Returns a matrix filled row-by-row with the 
elements from 
list
. 
elementsPerRow
, if included, specifies the number 
of elements per row. Default is the number of 
elements in 
list
 (one row). 
If 
list
 does not fill the resulting matrix, zeros are 
added. 
list4mat({1,2,3}) ¸  [1 2 3] 
list4mat({1,2,3,4,5},2)
 ¸ 
1 2
3 4
5 0
4
44
4ln  MATH/String menu 
 4
44
4 ln 
expression
  ⇒
⇒⇒
⇒ 
expression
Causes the input expression to be 
converted to an expression containing 
only natural logs (ln). 
Log(x)4 ln ¸ 
ln( )
ln(10)
x
ln()  2x key   
ln(
expression1
)  ⇒
⇒⇒
⇒ 
expression
ln(
list1
)  ⇒
⇒⇒
⇒ 
list
Returns the natural logarithm of the argument. 
For a list, returns the natural logarithms of the 
elements. 
ln(2.0) ¸ .693... 
If complex format mode is REAL: 
ln({ë 3,1.2,5}) ¸ 
  Error: Non-real result 
If complex format mode is RECTANGULAR: 
ln({ë 3,1.2,5}) ¸ 
 {ln(3) + 
pø i .182... ln(5)} 
ln(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
Returns the matrix natural logarithm of 
squareMatrix1
. This is 
not
 the same as calculating 
the natural logarithm of each element. For 
information about the calculation method, refer 
to 
cos() on. 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode and Rectangular complex 
format mode: 
ln([1,5,3;4,2,1;6,ë2,1]) ¸ 
1.831…+1.734…ø
i
 .009…ì 1.490…ø
i
 …
.448…
ì.725…ø
i
 1.064…+.623ø
i
 …
ë.266…ì 2.083…ø
i
 1.124…+1.790…ø
i
 … 










