Calculator User Manual
Appendix A: Functions and Instructions  865 
right()  MATH/List menu 
right(
list1
[, 
num
])  ⇒
⇒⇒
⇒ 
list
Returns the rightmost 
num
 elements contained in 
list1
. 
If you omit 
num
, returns all of 
list1
. 
right({1,3,ë 2,4},3) ¸ 
 {3 ë 2 4} 
right(
sourceString
[, 
num
])  ⇒ 
string
Returns the rightmost 
num
 characters contained 
in character string 
sourceString
. 
If you omit 
num
, returns all of 
sourceString
. 
right("Hello",2) ¸ "lo" 
right(
comparison
)  ⇒ 
expression
Returns the right side of an equation or 
inequality
.
right(x<3) ¸ 3 
root()  CATALOG/MATH/Number menu 
root(
expression
)  ⇒
⇒⇒
⇒ 
 root
Computes an nth root of x where x can be a real 
or complex floating point constant, an integer or 
complex rational constant, or a general symbolic 
expression. 
root(8,3) ¸ 2 
root(3,3)
 ¸ 3 
1/3
root(3,0,3)
 ¸ 1.442249570 
rotate()  MATH/Base menu 
rotate(
integer1
[,
#ofRotations
])  ⇒
⇒⇒
⇒ 
integer
Rotates the bits in a binary integer. You can enter 
integer1
 in any number base; it is converted 
automatically to a signed, 32-bit binary form. If 
the magnitude of 
integer1
 is too large for this 
form, a symmetric modulo operation brings it 
within the range. 
In Bin base mode: 
rotate(0b1111010110000110101) ¸ 
 0b10000000000000111101011000011010 
rotate(256,1) 
¸ 0b1000000000 
If 
#of Rotations
 is positive, the rotation is to the 
left. If 
#of Rotations
 is negative, the rotation is to 
the right. The default is ë 1 (rotate right one bit).
For example, in a right rotation: 
In Hex base mode: 
rotate(0h78E) ¸ 0h3C7 
rotate(0h78E,
ë2) ¸ 0h800001E3 
rotate(0h78E,2) 
¸ 0h1E38 
0b00000000000001111010110000110101 
produces: 
0b10000000000000111101011000011010 
The result is displayed according to the 
Base 
mode. 
Important: To enter a binary or hexadecimal 
number, always use the 0b or 0h prefix (zero, 
not the letter O). 
rotate(
list1
[,
#ofRotations
])  ⇒
⇒⇒
⇒ 
list
Returns a copy of 
list1
 rotated right or left by 
#of 
Rotations
 elements. Does not alter 
list1
. 
If 
#of Rotations
 is positive, the rotation is to the 
left. If 
#of Rotations
 is negative, the rotation is to 
the right. The default is ë 1 (rotate right one 
element). 
In Dec base mode: 
rotate({1,2,3,4}) ¸ 
  {4 1 2 3} 
rotate({1,2,3,4},
ë2) ¸ 
  {3 4 1 2} 
rotate({1,2,3,4},1) 
¸ 
  {2 3 4 1} 
Rightmost bit rotates to leftmost.
Each bit rotates right.










