Calculator User Manual
Appendix A: Functions and Instructions  887 
tan(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
Returns the matrix tangent of 
squareMatrix1
. This 
is 
not
 the same as calculating the tangent of each 
element. For information about the calculation 
method, refer to 
cos(). 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode: 
tan([1,5,3;4,2,1;6,ë2,1]) ¸ 
ë 28.291… 26.088… 11.114…
12.117… 
ë 7.835… ë 5.481…
36.818… 
ë 32.806… ë 10.459… 
tanê ()  ¥ S  key   
tanê (
expression1
)  ⇒
⇒⇒
⇒ 
expression
tanê (
list1
)  ⇒
⇒⇒
⇒ 
list
tanê (
expression1
) returns the angle whose 
tangent is 
expression1
 as an expression. 
tanê (
list1
) returns a list of the inverse tangents 
of each element of 
list1
. 
Note: The result is returned as a degree, gradian 
or radian angle, according to the current angle 
mode setting. 
In Degree angle mode: 
tanê (1) ¸ 45 
In Gradian angle mode: 
tanê (1) ¸ 50 
In Radian angle mode: 
tanê ({0,.2,.5}) ¸ 
  {0 .197
... .463...} 
tanê(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
Returns the matrix inverse tangent of 
squareMatrix1
. This is 
not
 the same as calculating 
the inverse tangent of each element. For 
information about the calculation method, refer 
to 
cos(). 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode: 
tanê([1,5,3;4,2,1;6,ë2,1]) ¸ 
ë.083… 1.266… .622…
.748… .630… 
ë.070… 
1.686… 
ë 1.182… .455…
tanh()  MATH/Hyperbolic menu 
tanh(
expression1
)  ⇒
⇒⇒
⇒ 
expression
tanh(
list1
)  ⇒
⇒⇒
⇒ 
list
tanh(
expression1
) returns the hyperbolic tangent 
of the argument as an expression. 
tanh(
list
) returns a list of the hyperbolic tangents 
of each element of 
list1
. 
tanh(1.2) ¸ .833... 
tanh({0,1})
 ¸  {0 tanh(1)} 
tanh(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
Returns the matrix hyperbolic tangent of 
squareMatrix1
. This is 
not
 the same as calculating 
the hyperbolic tangent of each element. For 
information about the calculation method, refer 
to 
cos(). 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode: 
tanh([1,5,3;4,2,1;6,ë2,1]) ¸ 
ë.097… .933… .425…
.488… .538… 
ë.129… 
1.282… 
ë 1.034… .428…










