Calculator User Manual
888  Appendix A: Functions and Instructions 
tanhê ()  MATH/Hyperbolic menu 
tanhê (
expression1
)  ⇒
⇒⇒
⇒ 
expression
tanhê (
list1
)  ⇒
⇒⇒
⇒ 
list
tanhê (
expression1
) returns the inverse hyperbolic 
tangent of the argument as an expression. 
tanhê (
list1
) returns a list of the inverse 
hyperbolic tangents of each element of 
list1
. 
In rectangular complex format mode: 
tanhê (0) ¸ 0 
tanh
ê ({1,2.1,3}) ¸ 
 {
ˆ .518... ì 1.570...ø
i
ln(2)
2
ì
p
2
ø
i
} 
tanhê(
squareMatrix1
)  ⇒
⇒⇒
⇒ 
squareMatrix
Returns the matrix inverse hyperbolic tangent of 
squareMatrix1
. This is 
not
 the same as calculating 
the inverse hyperbolic tangent of each element. 
For information about the calculation method, 
refer to 
cos(). 
squareMatrix1
 must be diagonalizable. The result 
always contains floating-point numbers. 
In Radian angle mode and Rectangular complex 
format mode: 
tanhê([1,5,3;4,2,1;6,ë2,1]) ¸ 
ë.099…+.164…ø
i
 .267…ì 1.490…ø
i
 …
ë.087…ì.725…ø
i
 .479…ì.947…ø
i
 …
.511…ì 2.083…ø
i
 ë.878…+1.790…ø
i
 … 
taylor()  MATH/Calculus menu 
taylor(
expression1
, 
var
, 
order
[, 
point
])  ⇒
⇒⇒
⇒ 
expression
Returns the requested Taylor polynomial. The 
polynomial includes non-zero terms of integer 
degrees from zero through 
order
 in (
var 
minus
point
). taylor() returns itself if there is no 
truncated power series of this order, or if it would 
require negative or fractional exponents. Use 
substitution and/or temporary multiplication by a 
power of 
(
var 
minus 
point
) to determine more general 
power series. 
point
 defaults to zero and is the expansion point. 
taylor(
e
^(‡(x)),x,2) ¸ 
taylor(
e
^(t),t,4)|t=‡(x) ¸ 
taylor(1/(x
ù (xì 1)),x,3) ¸ 
expand(taylor(x/(x
ù(xì1)), 
x,4)/x,x)
 ¸ 
tCollect()  MATH\Algebra\Trig menu 
tCollect(
expression1
)  ⇒
⇒⇒
⇒ 
expression
Returns an expression in which products and 
integer powers of sines and cosines are converted 
to a linear combination of sines and cosines of 
multiple angles, angle sums, and angle 
differences. The transformation converts 
trigonometric polynomials into a linear 
combination of their harmonics. 
Sometimes 
tCollect() will accomplish your goals 
when the default trigonometric simplification 
does not. 
tCollect() tends to reverse 
transformations done by 
tExpand(). Sometimes 
applying 
tExpand() to a result from tCollect(), 
or vice versa, in two separate steps simplifies an 
expression. 
tCollect((cos(a))^2) ¸ 
cos(2
ø a) + 1
2
tCollect(sin(
a)cos(b)) ¸ 
sin(
aì b)+sin(a+b)
2










