Calculator User Manual
Table Of Contents
- Read This First
 - Contents
 - Figures
 - Tables
 - Examples
 - Cautions
 - Introduction
 - Architectural Overview
 - Central Processing Unit
 - Memory and I/O Spaces
 - Program Control
 - Addressing Modes
 - Assembly Language Instructions
- Instruction Set Summary
 - How To Use the Instruction Descriptions
 - Instruction Descriptions
- ABS
 - ABS
 - ADD
 - ADD
 - ADD
 - ADD
 - ADDC
 - ADDC
 - ADDS
 - ADDS
 - ADDT
 - ADDT
 - ADRK
 - AND
 - AND
 - AND
 - APAC
 - APAC
 - B
 - BACC
 - BANZ
 - BANZ
 - BCND
 - BCND
 - BIT
 - BIT
 - BITT
 - BITT
 - BLDD
 - BLDD
 - BLDD
 - BLDD
 - BLDD
 - BLPD
 - BLPD
 - BLPD
 - BLPD
 - CALA
 - CALL
 - CC
 - CC
 - CLRC
 - CLRC
 - CMPL
 - CMPR
 - DMOV
 - DMOV
 - IDLE
 - IN
 - IN
 - INTR
 - LACC
 - LACC
 - LACC
 - LACL
 - LACL
 - LACL
 - LACT
 - LACT
 - LAR
 - LAR
 - LAR
 - LDP
 - LDP
 - LPH
 - LPH
 - LST
 - LST
 - LST
 - LST
 - LT
 - LT
 - LTA
 - LTA
 - LTD
 - LTD
 - LTD
 - LTP
 - LTP
 - LTS
 - LTS
 - MAC
 - MAC
 - MAC
 - MAC
 - MACD
 - MACD
 - MACD
 - MACD
 - MACD
 - MAR
 - MAR
 - MPY
 - MPY
 - MPY
 - MPYA
 - MPYA
 - MPYS
 - MPYS
 - MPYU
 - MPYU
 - NEG
 - NEG
 - NMI
 - NOP
 - NORM
 - NORM
 - NORM
 - OR
 - OR
 - OR
 - OUT
 - OUT
 - PAC
 - POP
 - POP
 - POPD
 - POPD
 - PSHD
 - PSHD
 - PUSH
 - RET
 - RETC
 - ROL
 - ROR
 - RPT
 - RPT
 - SACH
 - SACH
 - SACL
 - SACL
 - SAR
 - SAR
 - SBRK
 - SETC
 - SETC
 - SFL
 - SFR
 - SFR
 - SPAC
 - SPH
 - SPH
 - SPL
 - SPL
 - SPLK
 - SPLK
 - SPM
 - SQRA
 - SQRA
 - SQRS
 - SQRS
 - SST
 - SST
 - SUB
 - SUB
 - SUB
 - SUB
 - SUBB
 - SUBB
 - SUBC
 - SUBC
 - SUBS
 - SUBS
 - SUBT
 - SUBT
 - TBLR
 - TBLR
 - TBLR
 - TBLW
 - TBLW
 - TBLW
 - TRAP
 - XOR
 - XOR
 - XOR
 - ZALR
 - ZALR
 
 
 - On-Chip Peripherals
 - Synchronous Serial Port
 - Asynchronous Serial Port
 - TMS320C209
 - Register Summary
 - TMS320C1x/C2x/C2xx/C5x Instruction Set Comparison
 - Program Examples
 - Submitting ROM Codes to TI
 - Design Considerations for Using XDS510 Emulator
- E.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
 - E.2 Bus Protocol
 - E.3 Emulator Cable Pod
 - E.4 Emulator Cable Pod Signal Timing
 - E.5 Emulation Timing Calculations
 - E.6 Connections Between the Emulator and the Target System
 - E.7 Physical Dimensions for the 14-Pin Emulator Connector
 - E.8 Emulation Design Considerations
 
 - Glossary
 - Index
 

Power-Down Mode
5-36
5.8 Power-Down Mode
The ’C2xx has a power-down mode that allows the ’C2xx core to enter a dor-
mant state and use less power than during normal operation. Executing an
IDLE instruction initiates power-down mode. When the IDLE instruction
executes, the program counter is incremented once, and then all CPU activi-
ties are halted. While the ’C2xx is in power-down mode, all of its internal con-
tents are maintained. The content of all on-chip RAM remains unchanged. The
peripheral circuits continue to operate, allowing the serial ports and the timer
to take the CPU out of the power-down state. The CLKOUT1 pin remains ac-
tive if bit 0 of the CLK register is set to 0.
The methods for terminating power-down mode depend on whether the pow-
er-down was initiated under normal circumstances or as part of a HOLD opera-
tion. The following subsections describe the differences.
5.8.1 Normal Termination of Power-Down Mode
If power-down has been initiated, any hardware interrupt (internal or external)
takes the processor out of the IDLE state. If you use reset or NMI
, the CPU will
immediately execute the corresponding interrupt service routine. In addition,
if you use reset, registers will assume their reset values.
For a maskable hardware interrupt to wake the processor, it must be un-
masked by the interrupt mask register (IMR bit = 1). However, if the interrupt
is unmasked and is then requested, the processor will leave the IDLE state re-
gardless of the value of the INTM bit (bit 9 of status register ST0). The value
of the INTM bit will only determine the action of the CPU 
after
 power-down has
been terminated:
INTM = 0. The interrupt is enabled, and the CPU executes the correspond-
ing interrupt service routine.
INTM = 1. The interrupt is disabled, and the CPU continues with the
instruction after IDLE.
If you do not want the CPU to follow an interrupt service routine before continu-
ing with the interrupted program sequence:
Do not use reset or NMI to bring the processor out of power-down.
Make sure your program globally disables maskable interrupts (sets INTM
to 1) before IDLE is executed.










