User's Manual

TOBY-R2 series - System Integration Manual
UBX-16010572 - R04 System description
Page 19 of 147
1.5.1.1 VCC supply requirements
Table 6 summarizes the requirements for the VCC modules supply. See section 2.2.1 for suggestions to properly
design a VCC supply circuit compliant with the requirements listed in Table 6.
The supply circuit affects the RF compliance of the device integrating TOBY-R2 series modules
with applicable required certification schemes as well as antenna circuit design. Compliance is
guaranteed if the requirements summarized in the Table 6 are fulfilled.
Item
Requirement
Remark
VCC nominal voltage
Within VCC normal operating range:
3.30 V min. / 4.40 V max
RF performance is guaranteed when VCC PA voltage is
inside the normal operating range limits.
RF performance may be affected when VCC PA voltage is
outside the normal operating range limits, though the
module is still fully functional until the VCC voltage is
inside the extended operating range limits.
VCC voltage during
normal operation
Within VCC extended operating range:
3.00 V min. / 4.50 V max
VCC voltage must be above the extended operating range
minimum limit to switch-on the module.
The module may switch-off when the VCC voltage drops
below the extended operating range minimum limit.
Operation above VCC extended operating range is not
recommended and may affect device reliability.
VCC average current
Support with adequate margin the highest averaged
VCC current consumption value in connected-mode
conditions specified in TOBY-R2 Data Sheet [1].
The maximum average current consumption can be
greater than the specified value according to the actual
antenna mismatching, temperature and supply voltage.
Sections 1.5.1.2, 1.5.1.3 and 1.5.1.4 describe current
consumption profiles in 2G, 3G and LTE connected-mode.
VCC peak current
Support with margin the highest peak VCC current
consumption value in connected-mode conditions
specified in TOBY-R2 Data Sheet [1]
The specified maximum peak of current consumption
occurs during GSM single transmit slot in 850/900 MHz
connected-mode, in case of mismatched antenna.
Section 1.5.1.2 describes 2G Tx peak/pulse current.
VCC voltage drop
during 2G Tx slots
Lower than 400 mV
Supply voltage drop values greater than recommended
during 2G TDMA transmission slots directly affect the RF
compliance with applicable certification schemes.
Figure 5 describes supply voltage drop during 2G Tx slots.
VCC voltage ripple
during 2G/3G/LTE Tx
Noise in the supply has to be minimized
High supply voltage ripple values during LTE/3G/2G RF
transmissions in connected-mode directly affect the RF
compliance with applicable certification schemes.
Figure 5 describes supply voltage ripple during RF Tx.
VCC under/over-shoot
at start/end of Tx slots
Absent or at least minimized
Supply voltage under-shoot or over-shoot at the start or
the end of 2G TDMA transmission slots directly affect the
RF compliance with applicable certification schemes.
Figure 5 describes supply voltage under/over-shoot
Table 6: Summary of VCC modules supply requirements