Installation Instructions

LISA-U2 series - System Integration Manual
UBX-13001118 - R19 Early Production Information System description
Page 20 of 175
Any degradation in power supply performance (due to losses, noise or transients) will directly affect the RF
performance of the module since the single external DC power source indirectly supplies all the digital and
analog interfaces, and also directly supplies the RF power amplifier (PA).
The voltage at the VCC pins must ramp from 2.5 V to 3.2 V within 1 ms. This VCC slope allows a proper
switch on of the module when the voltage rises to the VCC normal operating range from a voltage of less
than 2.25 V. If the external supply circuit cannot raise the VCC voltage from 2.5 V to 3.2 V within 1 ms,
the RESET_N pin should be kept low during VCC rising edge, so that the module will switch on releasing
the RESET_N pin when the VCC voltage stabilizes at its nominal value within the normal operating range.
1.5.2.1 VCC application circuits
LISA-U2 series modules must be supplied through the VCC pins by a proper DC power supply, which can be
selected according to the application requirements (see Figure 5) between the different possible supply sources
types, which most common ones are the following:
Switching regulator
Low Drop-Out (LDO) linear regulator
Rechargeable Lithium-ion (Li-Ion) or Lithium-ion polymer (Li-Pol) battery
Primary (disposable) battery
Main Supply
Available?
Battery
Li-Ion 3.7 V
Linear LDO
Regulator
Main Supply
Voltage > 5V?
Switching Step-Down
Regulator
No, portable device
No, less than 5 V
Yes, greater than 5 V
Yes, always available
Figure 5: VCC supply concept selection
The switching step-down regulator is the typical choice when the available primary supply source has a nominal
voltage much higher (e.g. greater than 5 V) than the LISA-U2 series modules operating supply voltage. The use
of switching step-down provides the best power efficiency for the overall application and minimizes current
drawn from the main supply source.
The use of an LDO linear regulator becomes convenient for a primary supply with a relatively low voltage (e.g.
less than 5 V). In this case the typical 90% efficiency of the switching regulator will diminish the benefit of
voltage step-down and no true advantage will be gained in input current savings. On the opposite side, linear
regulators are not recommended for high voltage step-down as they will dissipate a considerable amount of
energy in thermal power.
If LISA-U2 series modules are deployed in a mobile unit where no permanent primary supply source is available,
then a battery will be required to provide VCC. A standard 3-cell Li-Ion or Li-Pol battery pack directly connected
to VCC is the usual choice for battery-powered devices. During charging, batteries with Ni-MH chemistry
typically reach a maximum voltage that is above the maximum rating for VCC, and should therefore be avoided.
The use of primary (not rechargeable) battery is uncommon, since the most cells available are seldom capable of
delivering the burst peak current for a GSM call due to high internal resistance.
Keep in mind that the use of batteries requires the implementation of a suitable charger circuit (not included in
LISA-U2 series modules). The charger circuit should be designed in order to prevent over-voltage on VCC beyond
the upper limit of the absolute maximum rating.
The usage of more than one DC supply at the same time should be carefully evaluated: depending on the supply
source characteristics, different DC supply systems can result as mutually exclusive.