Information
Table Of Contents
- A. Overview
- 1. Getting started
- 1.1 The BME688 Gas Sensor
- 1.2 Example: Coffee vs. Normal Air
- 1.3 A Few Things To Keep In Mind
- 1.4 Step 1: Record Normal Air
- 1.5 Step 2: Record Espresso Coffee
- 1.6 Step 3: Record Normal Air Again
- 1.7 Step 4: Record Filter Coffee
- 1.8 Step 5: Import & Label The Data
- 1.9 Step 6: Create New Algorithm and Classes
- 1.10 Step 7: Train And Evaluate The Algorithm
- 1.11 Step 8: Export The Algorithm
- 1.12 Conclusion
- 2. Introduction
- 2.1 What is it about? – An analogy
- 2.2 Why the BME688?
- 2.3 What is a use case for a gas sensor?
- 2.4 What is special about the BME688 gas sensor?
- 2.5 How can I evaluate BME688 performance for a specific use case?
- 2.6 How can I use the results for my product development?
- 3. Glossary
- 3.1 Sensor Board
- 3.2 Measurement Session
- 3.3 Algorithm
- B. Process Steps
- 1. Configure Board
- 1.1 Overview
- 1.2 Board Type
- 1.3 Board Mode
- 1.4 Heater Profile
- 1.5 Duty Cycle
- 1.6 Board Layout
- 2. Record Data
- 2.1 Overview
- 2.2 Start recording
- 2.3 During recording
- 2.4 End recording
- 3. Import Data
- 3.1 Overview
- 3.2 Data Overview
- 3.3 Board ID
- 3.4 Board Type
- 3.5 Board Mode
- 3.6 Session Name
- 3.7 Session Date
- 3.8 Specimen Data
- 4. Collect Specimens
- 4.1 Overview
- 4.2 Label
- 4.3 Comment
- 4.4 Session
- 4.5 Start & End Time
- 4.6 Duration
- 4.7 Cycles Total
- 4.8 Cycles Dropped
- 4.9 Remaining Cycles
- 4.10 Board Configuration
- 4.11 Board ID
- 4.12 Board Type
- 4.13 Board Mode
- 4.14 Show Configuration
- 5. Train Algorithms
- 5.1 Overview
- 5.2 Name
- 5.3 Created
- 5.4 Classes
- 5.5 Class Name & Color
- 5.6 Common Data
- 5.7 Data Balance
- 5.8 Data Channels
- 5.9 Neural Net
- 5.10 Training Method
- 5.11 Max. Training Rounds
- 5.12 Data Splitting
- 6. Evaluate Algorithms
- 6.1 Overview
- 6.2 Confusion Matrix
- 6.3 Accuracy
- 6.4 Macro-averaged F1 Score
- 6.5 Macro-averaged False Positive Rate
- 6.6 Training Data
- 6.7 Test Data
- 6.8 Additional Testing
- 2.1
Bosch Sensortec | BME AI-Studio Documentation 22 | 49
Modifications reserved | Data subject to change
without notice Document number: BST-BME688-AN001-00
It is important to pay attention to individual combinations of heater profiles (HP) and duty Cycles (RDC), so called
HP/RDC combinations. Each sensor runs in a specific HP/RDC combination that determines
the behavior how data is
recorded. Not only is this important to the configuration of the boards and the recording of the data, but also for creating
and training algorithms. One algorithm can use only identical HP/RDC combinations for training.
1.2 Board Type
Here you can choose the type of BME board, for which you want to create a configuration file. In this version of BME AI-
Studio, you can choose one board type:
BME board with eight BME688 sensors (BME board x8)










