SC20 Hardware Design Smart LTE Module Series Rev: SC20_Hardware_Design_V1.4 Date: 2017-10-17 www.quectel.
Smart LTE Module Series SC20 Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters: Quectel Wireless Solutions Co., Ltd. 7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit: http://quectel.com/support/sales.
Smart LTE Module Series SC20 Hardware Design About the Document History Revision Date Author Description 1.0 2016-04-12 Tony GAO Initial 1.1 2016-05-04 Mark ZHANG 1. Updated RF Receiving Sensitivity 2. Updated Operation Temperature 1.2 2016-07-22 Sea BAI Added Chapters 2.4, 3.6~3.22, 4, 5 and 9 1.3 2016-08-19 Sea BAI Updated Charging Parameters in Table 41 1. 2. 3. 1.4 2017-10-17 Sea BAI/ Beny ZHU/ Jenson WU 4. 5. 6. 7. 8. 9.
Smart LTE Module Series SC20 Hardware Design Contents About the Document..................................................................................................................................................2 Contents........................................................................................................................................................................3 Table Index......................................................................................................
Smart LTE Module Series SC20 Hardware Design 3.21. Audio Interfaces.................................................................................................................................... 62 3.21.1. Reference Circuit Design for Microphone..............................................................................63 3.21.2. Reference Circuit Design for Receiver Interface.................................................................. 63 3.21.3.
Smart LTE Module Series SC20 Hardware Design 9.1. 9.2. 9.3. 10 11 12 13 Storage................................................................................................................................................. 110 Manufacturing and Soldering............................................................................................................ 111 Packaging.....................................................................................................................................
Smart LTE Module Series SC20 Hardware Design Table Index TABLE 1: SC20-CE R1.1 FREQUENCY BANDS........................................................................................................ 13 TABLE 2: SC20-E FREQUENCY BANDS..................................................................................................................... 14 TABLE 3: SC20-A FREQUENCY BANDS.....................................................................................................................
Smart LTE Module Series SC20 Hardware Design TABLE 42: OPERATING TEMPERATURE....................................................................................................................84 TABLE 43: SC20-CE R1.1 CURRENT CONSUMPTION............................................................................................84 TABLE 44: SC20-E CURRENT CONSUMPTION........................................................................................................
Smart LTE Module Series SC20 Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM............................................................................................................................ 20 FIGURE 2: PIN ASSIGNMENT (TOP VIEW)................................................................................................................ 22 FIGURE 3: VOLTAGE DROP SAMPLE.....................................................................................................................
Smart LTE Module Series SC20 Hardware Design FIGURE 39: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)...................................................... 80 FIGURE 40: MECHANICALS OF UF.L-LP CONNECTORS.......................................................................................81 FIGURE 41: SPACE FACTOR OF MATED CONNECTORS (UNIT: MM)................................................................ 81 FIGURE 42: MODULE TOP AND SIDE DIMENSIONS....................................................
Smart LTE Module Series SC20 Hardware Design 1 Introduction This document defines the SC20 module and describes its air interface and hardware interface which are connected with customers’ application. This document can help customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of SC20 module. Associated with application note and user guide, customers can use SC20 module to design and set up mobile applications easily. 1.1.
Smart LTE Module Series SC20 Hardware Design Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.
Smart LTE Module Series SC20 Hardware Design LTE B40 GPS Receiver SC20_Hardware_Design 2300MHz - 2400MHz @25dBm 1575.42MHz The device is restricted to indoor use only when operating in the 5150 to 5350 MHz frequency range.
Smart LTE Module Series SC20 Hardware Design 2 Product Concept 2.1. General Description SC20 is a series of Smart LTE module based on Qualcomm platform and Android operating system, and provides industrial grade performance. It supports worldwide LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, TD-SCDMA, CDMA, EDGE and GPRS coverage, and also supports short-range wireless communication via Wi-Fi 802.11a/b/g/n and BT4.1 LE.
Smart LTE Module Series SC20 Hardware Design BeiDou: 1561.098MHz±2.046MHz Table 2: SC20-E Frequency Bands Type Frequency LTE-FDD B1/B3/B5/B7/B8/B20 LTE-TDD B38/B40/B41 WCDMA B1/B5/B8 GSM 850/900/1800/1900MHz Wi-Fi 802.11a/b/g/n 2400MHz~2482MHz 5180MHz~5825MHz BT4.1 LE 2402MHz~2480MHz GNSS GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.
Smart LTE Module Series SC20 Hardware Design Table 4: SC20-AU Frequency Bands Type Frequency LTE-FDD B1/B3/B5/B7/B8/B28 LTE-TDD B40 WCDMA B1/B2/B5/B8 GSM 850/900/1800/1900MHz Wi-Fi 802.11a/b/g/n 2400MHz~2482MHz 5180MHz~5825MHz BT4.1 LE 2402MHz~2480MHz GNSS GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.046MHz Table 5: SC20-J Frequency Bands Type Frequency LTE-FDD B1/B3/B8/B18/B19/B26 LTE-TDD B41 WCDMA B1/B6/B8/B19 Wi-Fi 802.
Smart LTE Module Series SC20 Hardware Design 2.2. Key Features The following table describes the detailed features of SC20 module. Table 6: SC20 Key Features Feature Details Applications Processor ARM Cortex-A7 microprocessor cores (quad-core) up to 1.1GHz 512KB L2 cache Modem DSP QDSP6 v5 core up to 691.2MHz 768KB L2 cache Memory 8GB EMMC+8Gb LPDDR3 Operating System Android 6.0 Power Supply Supply voltage: 3.5V~4.2V Typical supply voltage: 3.
Smart LTE Module Series SC20 Hardware Design GSM Features R99: CSD: 9.6kbps, 14.4kbps GPRS: Support GPRS multi-slot class 33 (33 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Max 85.6Kbps (UL)/Max 107Kbps (DL) EDGE: Support EDGE multi-slot class 33 (33 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Max 236.8Kbps (UL)/Max 296Kbps (DL) WLAN Features Support 2.
Smart LTE Module Series SC20 Hardware Design Audio output: Class AB stereo headphone output Class AB earpiece differential output Class D speaker differential amplifier output Audio Codec HR, FR, EFR, AMR, AMR-WB USB Interface Compliant with USB 2.
Smart LTE Module Series SC20 Hardware Design NOTES 1. 2. Within operation temperature range, the module is 3GPP compliant. Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances.
Smart LTE Module Series SC20 Hardware Design Figure 1: Functional Diagram 2.4. Evaluation Board In order to help customers develop applications with SC20 conveniently, Quectel supplies the evaluation board (SMART EVB), USB to RS232 converter cable, USB data cable, power adapter, battery, earphone, antenna and other peripherals to control or test the module. For more details, please refer to document [1].
Smart LTE Module Series SC20 Hardware Design 3 Application Interfaces 3.1. General Description SC20 is equipped with 146-pin 1.0mm pitch SMT pads plus 64-pin ground/reserved pads that can be embedded into cellular application platform. The following chapters provide the detailed description of pins/interfaces listed below.
Smart LTE Module Series SC20 Hardware Design 3.2. Pin Assignment The following figure shows the pin assignment of SC20 module.
Smart LTE Module Series SC20 Hardware Design 3.3. Pin Description The following tables show the SC20’s pin definition. Table 7: I/O Parameters Definition Type Description IO Bidirectional DI Digital input DO Digital output PI Power input PO Power output AI Analog input AO Analog output OD Open drain Table 8: Pin Description Power Supply Pin Name VBAT_BB VBAT_RF VRTC LDO5_1V8 Pin No.
Smart LTE Module Series SC20 Hardware Design LDO6_1V8 125 PO 1.8V output power supply Vnorm=1.8V IOmax=100mA Power supply for peripherals. 2.2uF~4.7uF capacitor is recommended to be applied to the LDO6_1V8 pin. If unused, keep this pin open. Power supply for peripherals. 2.2uF~4.7uF capacitor is recommended to be applied to the LDO17_2V85 pin. If unused, keep this pin open. LDO17_2V85 129 PO 2.85V output power supply Vnorm=2.85V IOmax=300mA SD_LDO11 38 PO Power supply for SD card. Vnorm=2.
Smart LTE Module Series SC20 Hardware Design 209 Audio Interfaces Pin Name Pin No.
Smart LTE Module Series SC20 Hardware Design (U)SIM Interfaces Pin Name USIM2_ DETECT USIM2_RST USIM2_CLK USIM2_DATA USIM2_VDD USIM1_ DETECT USIM1_RST USIM1_CLK USIM1_DATA Pin No. 17 18 19 20 21 22 23 24 25 SC20_Hardware_Design I/O Description DC Characteristics Comment Active Low. External pull-up resistor is required. If unused, keep this pin open. DI (U)SIM2 card hot-plug detection VILmax=0.63V VIHmin=1.17V DO (U)SIM2 card reset signal VOLmax=0.4V VOHmin= 0.
Smart LTE Module Series SC20 Hardware Design VOLmax=0.4V VOHmin= 0.8×USIM1_VDD USIM1_VDD 26 PO (U)SIM1 card power supply For 1.8V (U)SIM: Vmax=1.85V Vmin=1.75V For 2.95V (U)SIM: Vmax=3.1V Vmin=2.8V Either 1.8V or 2.95V (U)SIM card is supported by the module automatically UART Interfaces Pin Name UART1_TX UART1_RX UART1_CTS UART1_RTS UART2_RX UART2_TX Pin No. 34 35 36 37 93 94 I/O Description DC Characteristics Comment DO UART1 transmit data VOLmax=0.45V VOHmin=1.35V 1.
Smart LTE Module Series SC20 Hardware Design VOHmin=2.2V SD_CMD 40 IO SD_DATA0 41 IO SD_DATA1 42 IO Command signal of SD card High speed bidirectional digital signal lines of SD card 1.8V SD card: VILmax=0.58V VIHmin=1.27V VOLmax=0.45V VOHmin=1.4V 2.95V SD card: VILmax=0.73V VIHmin=1.84V VOLmax=0.37V VOHmin=2.2V 1.8V SD card: VILmax=0.58V VIHmin=1.27V VOLmax=0.45V VOHmin=1.4V 2.95V SD card: VILmax=0.73V VIHmin=1.84V VOLmax=0.37V VOHmin=2.
Smart LTE Module Series SC20 Hardware Design Pin Name Pin No. I/O Description DC Characteristics VOLmax=0.45V VOHmax=VBAT_BB Comment PWM 29 DO Adjust the backlight brightness. PWM control signal. LCD_RST 49 DO LCD reset signal VOLmax=0.45V VOHmin=1.35V 1.8V power domain. Active low. LCD_TE 50 DI LCD tearing effect signal VILmax=0.63V VIHmin=1.17V 1.8V power domain.
Smart LTE Module Series SC20 Hardware Design MIPI_CSI0_ LN0N 65 AI MIPI CSI data signal (negative) MIPI_CSI0_ LN0P 66 AI MIPI CSI data signal (positive) MIPI_CSI0_ LN1N 67 AI MIPI CSI data signal (negative) MIPI_CSI0_ LN1P 68 AI MIPI CSI data signal (positive) MIPI_CSI1_ CLKN 70 AI MIPI CSI clock signal (negative) MIPI_CSI1_ CLKP 71 AI MIPI CSI clock signal (positive) MIPI_CSI1_ LN0N 72 AI MIPI CSI data signal (negative) MIPI_CSI1_ LN0P 73 AI MIPI CSI data signal (positive)
Smart LTE Module Series SC20 Hardware Design Pin Name Pin No I/O Description DC Characteristics Comment PWRKEY 114 DI Turn on/off the module VILmax=0.63V VIHmin=1.17V Pull-up to 1.8V internally, active low. KEY_VOL_ UP 95 DI Volume up VILmax=0.63V VIHmin=1.17V If unused, keep this pin open. KEY_VOL_ DOWN 96 DI Volume down VILmax=0.63V VIHmin=1.17V If unused, keep this pin open. DC Characteristics Comment SENSOR_I2C Interface Pin Name Pin No.
Smart LTE Module Series SC20 Hardware Design GPIO_23 33 IO GPIO GPIO_32 90 IO GPIO GPIO_31 97 IO GPIO GPIO_92 98 IO GPIO GPIO_88 99 IO GPIO GPIO_89 100 IO GPIO GPIO_69 101 IO GPIO GPIO_68 102 IO GPIO GPIO_97 103 IO GPIO GPIO_110 104 IO GPIO GPIO_0 105 IO GPIO GPIO_98 106 IO GPIO GPIO_94 107 IO GPIO GPIO_36 108 IO GPIO GPIO_65 109 IO GPIO GPIO_96 110 IO GPIO GPIO_58 112 IO GPIO GPIO_99 113 IO GPIO GPIO_95 115 IO GPIO GPIO_11 116 I
Smart LTE Module Series SC20 Hardware Design Other Interfaces Pin Name Pin No. I/O Description 28 PO Motor drive RESET_N 179 DI Reset the module CHARGE_ SEL 46 127 Comment Connected to the negative terminal of the motor. VIB_DRV USB_BOOT DC Characteristics Force the module to boot from USB port Set USB_BOOT pin to high level will force the module to enter into emergency download mode.
Smart LTE Module Series SC20 Hardware Design 3.4. Power Supply 3.4.1. Power Supply Pins SC20 provides four VBAT pins dedicated to connection with the external power supply. Two VBAT_RF pins are used for module’s RF part; two VBAT_BB pins are used for module’s baseband part. 3.4.2. Decrease Voltage Drop The power supply range of the module is 3.5V~4.2V, and the recommended value is 3.8V. The power supply performance, such as load capacity, voltage ripple, etc.
Smart LTE Module Series SC20 Hardware Design Figure 4: Star Structure of the Power Supply 3.4.3. Reference Design for Power Supply The power design for the module is very important, as the performance of module largely depends on the power source. The power supply of SC20 should be able to provide sufficient current up to 3A at least. If the voltage drop between the input and output is not too high, it is suggested to use an LDO to supply power for the module.
Smart LTE Module Series SC20 Hardware Design NOTES 1. 2. It is suggested that customers should switch off the power supply for module in abnormal state, and then switch on the power to restart the module. The module supports battery charging function by default. If the above power supply design is adopted, please make sure the charging function is disabled by software, or connect VBAT to Schottky diode in series to avoid the reverse current to the power supply chip. 3.5. Turn on and off Scenarios 3.5.1.
Smart LTE Module Series SC20 Hardware Design Figure 7: Turn on the Module Using Keystroke The turning on scenario is illustrated in the following figure. Figure 8: Timing of Turning on Module NOTE Make sure that VBAT is stable before pulling down PWRKEY pin. The recommended time between them is no less than 30ms. PWRKEY pin cannot be pulled down all the time.
Smart LTE Module Series SC20 Hardware Design 3.5.2. Turn off Module Set the PWRKEY pin low for at least 1s, and then choose to turn off the module when the prompt window comes up. The other way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will execute forced shutdown. The forced power-down scenario is illustrated in the following figure. Figure 9: Timing of Turning off Module 3.6.
Smart LTE Module Series SC20 Hardware Design Figure 11: RTC Powered by Capacitor If RTC is ineffective, it can be synchronized through network after the module is powered on. 2.0V~3.25V input voltage range and 3.0V typical value for VRTC. When VBAT is disconnected, the average consumption is about 5uA. When powered by VBAT, the RTC error is 50ppm. When powered by VRTC, the RTC error is 200ppm.
Smart LTE Module Series SC20 Hardware Design USIM2_VDD 1.750~3.337 1.80/2.95 50 3.8. Battery Charge and Management SC20 module can recharge batteries. The battery charger in SC20 module supports trickle charging, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion batteries. Trickle charging: There are two steps in this mode. When the battery voltage is below 2.8V, a 90mA trickle charging current is applied to the battery.
Smart LTE Module Series SC20 Hardware Design Mobile devices such as mobile phones and handheld POS systems are powered by batteries. When different batteries are utilized, the charging and discharging curve has to be modified correspondingly so as to achieve the best effect. If thermistor is not available in the battery, or adapter is utilized for powering module, then there is only need for VBAT and GND connection.
Smart LTE Module Series SC20 Hardware Design Figure 13: USB Interface Reference Design (OTG is not Supported) Figure 14: USB Interface Reference Design (OTG is Supported) SC20 supports OTG protocol. If OTG function is needed, please refer to the above figure for the reference design. AW3605DNR is a high efficiency DC-DC chip manufactured by AWINIC, and customers can choose according to their own demands.
Smart LTE Module Series SC20 Hardware Design It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90Ω. Keep the ESD protection devices as close as possible to the USB connector. Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines. Typically, the capacitance value should be less than 2pF.
Smart LTE Module Series SC20 Hardware Design UART1 provides 1.8V logic level. A level translator should be used if customers’ application is equipped with a 3.3V UART interface. A level translator TXS0104PWR provided by Texas Instruments is recommended. The following figure shows the reference design. Figure 15: Reference Circuit with Level Translator Chip (for UART1) The following figure is an example of connection between SC20 and PC.
Smart LTE Module Series SC20 Hardware Design 3.11. (U)SIM Interfaces SC20 provides 2 (U)SIM interfaces which circuitry meet ETSI and IMT-2000 requirements. Dual SIM Card Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM card interfaces are powered by the internal power supply of SC20 module. Table 13: Pin Definition of (U)SIM Interfaces Pin Name Pin No I/O Description Comment Active Low. External pull-up resistor is required.
Smart LTE Module Series SC20 Hardware Design Figure 17: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector If there is no need to use USIM_DETECT, please keep it open. The following is a reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector.
Smart LTE Module Series SC20 Hardware Design In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
Smart LTE Module Series SC20 Hardware Design Figure 19: Reference Circuit for SD Card Interface SD_LDO11 is a peripheral driver power supply for SD card. The maximum drive current is approx. 600mA. Because of the high drive current, it is recommended that the trace width is 0.6mm or more. In order to ensure the stability of drive power, a 2.2uF capacitor should be added in parallel near the SD card connector. CMD, CLK, DATA0, DATA1, DATA2 and DATA3 are all high speed signal lines.
Smart LTE Module Series SC20 Hardware Design 44 SD_DATA3 14.57 3.13. GPIO Interfaces SC20 has abundant GPIO interfaces with logic level of 1.8V. The pin definition is listed below.
Smart LTE Module Series SC20 Hardware Design 83 CAM_I2C_SCL GPIO_30 B-PD: nppukp 84 CAM_I2C_SDA GPIO_29 B-PD: nppukp 90 GPIO_32 GPIO_32 B-PD: nppukp 91 SENSOR_I2C_SCL GPIO_7 B-PD: nppukp 92 SENSOR_I2C_SDA GPIO_6 B-PD: nppukp 93 UART2_RX GPIO_5 B-PD: nppukp 94 UART2_TX GPIO_4 B-PD: nppukp 95 KEY_VOL_UP GPIO_90 B-PD: nppukp Wakeup 96 KEY_VOL_DOWN GPIO_91 B-PD: nppukp Wakeup 97 GPIO_31 GPIO_31 B-PD: nppukp Wakeup 98 GPIO_92 GPIO_92 B-PD: nppukp Wakeup 99 GPIO_8
Smart LTE Module Series SC20 Hardware Design 115 GPIO_95 GPIO_95 B-PD: nppukp Wakeup 116 GPIO_11 GPIO_11 B-PD: nppukp Wakeup 117 GPIO_10 GPIO_10 B-PD: nppukp 118 GPIO_9 GPIO_9 B-PD: nppukp 119 GPIO_8 GPIO_8 B-PD: nppukp 123 GPIO_16 GPIO_16 B-PD: nppukp 124 GPIO_17 GPIO_17 B-PD: nppukp NOTE Wakeup: interrupt pins that can wake up the system B: Bidirectional digital with CMOS input H: High-voltage tolerant PD: nppukp = default pull-down with programmable options followi
Smart LTE Module Series SC20 Hardware Design 3.15. ADC Interfaces SC20 module provides three analog-to-digital converter (ADC) interfaces, and the pin definition is shown below. Table 18: Pin Definition of ADC Interfaces Pin Name Pin No I/O Description ADC 128 AI General purpose ADC Max input voltage is 1.7V VBAT_SNS 133 AI Input voltage sense Max input voltage is 4.
Smart LTE Module Series SC20 Hardware Design Figure 20: Reference Circuit for Motor Connection When the motor stops, the redundant electricity can be discharged from the circuit loop formed by diodes, thus avoiding component damages. 3.17. LCM Interface SC20 module provides an LCM interface meeting MIPI DSI specification. The interface supports high speed differential data transmission, with up to four lanes and a transmission rate up to 1.5Gbps per lane. It supports maximally 720P resolution displays.
Smart LTE Module Series SC20 Hardware Design MIPI_DSI_CLKN 52 AO MIPI DSI clock signal (negative) MIPI_DSI_CLKP 53 AO MIPI DSI clock signal (positive) MIPI_DSI_LN0N 54 AO MIPI DSI data signal (negative) MIPI_DSI_LN0P 55 AO MIPI DSI data signal (positive) MIPI_DSI_LN1N 56 AO MIPI DSI data signal (negative) MIPI_DSI_LN1P 57 AO MIPI DSI data signal (positive) MIPI_DSI_LN2N 58 AO MIPI DSI data signal (negative) MIPI_DSI_LN2P 59 AO MIPI DSI data signal (positive) MIPI_DSI_LN3N 6
Smart LTE Module Series SC20 Hardware Design MIPI are high speed signal lines. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference. ICMEF112P900MFR from ICT is recommended. When compatible design with other displays is required, please connect the LCD_ID pin of LCM to the module’s ADC pin, and please note that the output voltage of LCD_ID cannot exceed the voltage range of ADC pin.
Smart LTE Module Series SC20 Hardware Design TP_I2C_SCL 47 OD I2C clock signal of TP TP_I2C_SDA 48 OD I2C data signal of TP The following illustrates a TP interface reference circuit, by taking the connection with TP interface on LHR050H41-00 (IC: GT9147) from HUARUI Lighting as an example. Figure 23: Reference Circuit Design for TP Interface 3.19.
Smart LTE Module Series SC20 Hardware Design Table 22: Pin Definition of Rear Camera Interface Pin Name LDO6_1V8 Pin No 125 I/O Description Comment PO 1.8V output power supply for DOVDD of camera 1.8V normal voltage. Vnorm=1.8V IOmax=100mA 2.85V normal voltage. Vnorm=2.85V IOmax=300mA LDO17_2V85 129 PO 2.
Smart LTE Module Series SC20 Hardware Design Figure 24: Reference Circuit Design for Rear Camera Interface NOTE DVDD_1V2 is used to power the rear camera core, and VDD_AF_2V8 is used to power the rear camera AF circuit. Both of them are powered by an external LDO. 3.19.2. Front Camera Interface The front camera interface integrates a differential data interface meeting one-lane MIPI CSI standard, and is tested to support 2MP cameras. The pin definition of front camera interface is shown below.
Smart LTE Module Series SC20 Hardware Design LDO17_2V85 129 PO 2.
Smart LTE Module Series SC20 Hardware Design 3.19.3. Design Considerations Special attention should be paid to the definition of video device interface in schematic design. Different video devices will have varied definitions for their corresponding connectors. Assure the device and the connectors are correctly connected. MIPI are high speed signal lines, supporting maximum data rate up to 1.5Gbps. The differential impedance should be controlled as 100Ω.
Smart LTE Module Series SC20 Hardware Design 65 MIPI_CSI0_LN0N 12.13 66 MIPI_CSI0_LN0P 12.53 67 MIPI_CSI0_LN1N 13.73 68 MIPI_CSI0_LN1P 14.49 70 MIPI_CSI1_CLKN 17.32 71 MIPI_CSI1_CLKP 17.45 72 MIPI_CSI1_LN0N 18.89 73 MIPI_CSI1_LN0P 19.24 0.40 0.76 0.13 0.35 3.20. Sensor Interfaces SC20 module supports communication with sensors via I2C interface, and it supports ALS/PS, Compass, G-sensor, and Gyroscopic sensors.
Smart LTE Module Series SC20 Hardware Design 3.21. Audio Interfaces SC20 module provides two analog input channels and three analog output channels. The following table shows the pin definition.
Smart LTE Module Series SC20 Hardware Design 3.21.1. Reference Circuit Design for Microphone Figure 26: Reference Circuit Design for Microphone Interface 3.21.2.
Smart LTE Module Series SC20 Hardware Design 3.21.3. Reference Circuit Design for Headphone Interface Figure 28: Reference Circuit Design for Headphone Interface 3.21.4.
Smart LTE Module Series SC20 Hardware Design 3.21.5. Audio Interface Design Considerations It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is used for filtering out 1800MHz RF interference.
Smart LTE Module Series SC20 Hardware Design 4 Wi-Fi and BT SC20 module provides a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions. The interface impedance is 50Ω. External antennas such as PCB antenna, sucker antenna and ceramic antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions. 4.1. Wi-Fi Overview SC20 series module supports 2.4GHz/5GHz double-band WLAN wireless communication based on IEEE 802.11a/b/g/n standard protocols.
Smart LTE Module Series SC20 Hardware Design 5GHz 802.11n HT20 MCS7 13dBm±2.5dB 802.11n HT40 MCS0 14dBm±2.5dB 802.11n HT40 MCS7 13dBm±2.5dB 802.11a 6Mbps 15dBm±2.5dB 802.11a 54Mbps 13dBm±2.5dB 802.11n HT20 MCS0 14dBm±2.5dB 802.11n HT20 MCS7 12dBm±2.5dB 802.11n HT40 MCS0 14dBm±2.5dB 802.11n HT40 MCS7 12dBm±2.5dB Standard Rate Sensitivity 802.11b 1Mbps -96dBm 802.11b 11Mbps -87dBm 802.11g 6Mbps -91dBm 802.11g 54Mbps -74dBm 802.11n HT20 MCS0 -90dBm 802.
Smart LTE Module Series SC20 Hardware Design 802.11n HT40 MCS7 -66dBm Referenced specifications are listed below: IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007 IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE 802.11-2007 WLAN MAC and PHY, June 2007 4.2. BT Overview SC20 module supports BT4.1 (BR/EDR+BLE) specification, as well as GFSK, 8-DPSK, π/4-DQPSK modulation modes.
Smart LTE Module Series SC20 Hardware Design 4.2.1. BT Performance The following table lists the BT transmitting and receiving performance of SC20 module. Table 30: BT Transmitting and Receiving Performance Transmitter Performance Packet Types DH5 2-DH5 3-DH5 Transmitting Power 10dBm±2.5dB 8dBm±2.5dB 8dBm±2.
Smart LTE Module Series SC20 Hardware Design 5 GNSS SC20 module integrates a Qualcomm IZat™ GNSS engine (GEN 8C) which supports multiple positioning and navigation systems including GPS, GLONASS and BeiDou. With an embedded LNA, the module provides greatly improved positioning accuracy. 5.1. GNSS Performance The following table lists the GNSS performance of SC20 module in conduction mode. Table 31: GNSS Performance Parameter Sensitivity (GNSS) TTFF (GNSS) Static Drift (GNSS) Description Typ.
Smart LTE Module Series SC20 Hardware Design Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing and antenna layout) to avoid mutual interference. In user systems, GNSS RF signal lines and RF components should be placed far away from high speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip microcomputers, etc.
Smart LTE Module Series SC20 Hardware Design 6 Antenna Interface SC20 antenna interface includes a main antenna, an Rx-diversity/MIMO antenna, a GNSS antenna and a Wi-Fi/BT antenna. The antenna interface has an impedance of 50Ω. 6.1. Main/Rx-diversity Antenna Interfaces The pin definition of main/Rx-diversity antenna interfaces is shown below. Table 32: Pin Definition of Main/Rx-diversity Antenna Interfaces Pin Name Pin No.
Smart LTE Module Series SC20 Hardware Design WCDMA Band5 869~894 824~849 MHz WCDMA Band6 875~885 830~840 MHz WCDMA Band8 925~960 880~915 MHz WCDAM Band19 875~890 830~845 MHz CDMA BC0 869~894 824~849 MHz TD-SCDMA Band34 2010~2025 2010~2025 MHz TD-SCDMA Band39 1880~1920 1880~1920 MHz LTE-FDD Band1 2110~2170 1920~1980 MHz LTE-FDD Band2 1930~1990 1850~1910 MHz LTE-FDD Band3 1805~1880 1710~1785 MHz LTE-FDD Band4 2110~2155 1710~1755 MHz LTE-FDD Band5 869~894 824~849
Smart LTE Module Series SC20 Hardware Design LTE-TDD Band41 2555~2655 2555~2655 MHz NOTE The bandwidth of LTE-TDD Band 41 for SC20-J is 2545MHz~2655MHz, and the corresponding channel range is 40140~41240. 6.1.2. Reference Design of Main and Rx-diversity Antenna Interfaces A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A π-type matching circuit should be reserved for better RF performance.
Smart LTE Module Series SC20 Hardware Design Figure 32: Microstrip Line Design on a 2-layer PCB Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground) SC20_Hardware_Design Confidential / Released 6-75 / 122
Smart LTE Module Series SC20 Hardware Design Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground) In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design: Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω. The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
Smart LTE Module Series SC20 Hardware Design Table 35: Wi-Fi/BT Frequency Type Frequency Unit 802.11a/b/g/n 2400~2482 5180~5825 MHz BT4.1 LE 2402~2480 MHz NOTE The supported Wi-Fi frequencies of SC20-J are 2400MHz~2496MHz and 5180MHz~5825MHz. A reference circuit design for Wi-Fi/BT antenna interface is shown as below. A π-type matching circuit should be reserved for better RF performance.
Smart LTE Module Series SC20 Hardware Design Table 37: GNSS Frequency Type Frequency Unit GPS 1575.42±1.023 MHz GLONASS 1597.5~1605.8 MHz BeiDou 1561.098±2.046 MHz 6.3.1. Recommended Circuit for Passive Antenna GNSS antenna interface supports passive ceramic antennas and other types of passive antennas.
Smart LTE Module Series SC20 Hardware Design Figure 38: Reference Circuit Design for GNSS Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirement The following table shows the requirement on main antenna, RX-diversity antenna, Wi-Fi/BT antenna and GNSS antenna.
Smart LTE Module Series SC20 Hardware Design Polarization Type: Vertical Cable Insertion Loss: < 1dB Frequency range: 1565MHz~1607MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) Passive Antenna Gain: > 0dBi Active Antenna Noise Figure: < 1.5dB Active Antenna Total Gain: > 18dBi (Typ.) GNSS 6.4.2. Recommended RF Connector for Antenna Installation If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by HIROSE. Figure 39: Dimensions of the U.
Smart LTE Module Series SC20 Hardware Design U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT. Figure 40: Mechanicals of U.FL-LP Connectors The following figure describes the space factor of mated connector. Figure 41: Space Factor of Mated Connectors (Unit: mm) For more details, please visit http://www.hirose.com.
Smart LTE Module Series SC20 Hardware Design 7 Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 39: Absolute Maximum Ratings Parameter Min. Max. Unit VBAT -0.5 6 V USB_VBUS -0.5 16 V Peak Current of VBAT 0 3 A Voltage on Digital Pins -0.3 2.3 V 7.2.
Smart LTE Module Series SC20 Hardware Design IVBAT Peak supply current (during transmission slot) USB_VBUS USB detection VRTC Power supply voltage of backup battery. Maximum power control level at EGSM900. 1.8 3.0 A 4.35 5.0 6.3 V 2.0 3.0 3.25 V 7.3. Charging Performance Specifications Table 41: Charging Performance Specifications Parameter Min. Typ. Max. Unit Trickle charging-A current 81 90 99 mA Trickle charging-A threshold voltage range (15.62mV steps) 2.5 2.796 2.
Smart LTE Module Series SC20 Hardware Design 7.4. Operating Temperature The operating temperature is listed in the following table. Table 42: Operating Temperature Parameter Min. Typ. Max. Unit Operating temperature range 1) -35 +25 +65 ºC Extended temperature range 2) -40 +75 ºC NOTES 1. 2. 1) Within operation temperature range, the module is 3GPP compliant.
Smart LTE Module Series SC20 Hardware Design LTE-FDD supply current LTE-TDD supply current GSM voice call CDMA voice call WCDMA voice call SC20_Hardware_Design Sleep (USB disconnected) @DRX=7 2.79 mA Sleep (USB disconnected) @DRX=8 2.49 mA Sleep (USB disconnected) @DRX=9 2.33 mA Sleep (USB disconnected) @DRX=5 5.60 mA Sleep (USB disconnected) @DRX=6 3.83 mA Sleep (USB disconnected) @DRX=7 3.02 mA Sleep (USB disconnected) @DRX=8 2.65 mA Sleep (USB disconnected) @DRX=5 5.
Smart LTE Module Series SC20 Hardware Design EDGE data transfer CDMA data transfer WCDMA data transfer LTE data transfer SC20_Hardware_Design Band8 (max power) @22.74dBm TBD mA EDGE900 (1UL/4DL) @26.29dBm TBD mA EDGE900 (2UL/3DL) @26.15dBm TBD mA EDGE900 (3UL/2DL) @26.06dBm TBD mA EDGE900 (4UL/1DL) @25.92dBm TBD mA DCS1800 (1UL/4DL) @24.89dBm TBD mA DCS1800 (2UL/3DL) @24.74dBm TBD mA DCS1800 (3UL/2DL) @24.54dBm TBD mA DCS1800 (4UL/1DL) @24.44dBm TBD mA BC0 (max power) @23.
Smart LTE Module Series SC20 Hardware Design @22.01dBm LTE-TDD Band41 @22.31dBm TBD mA Description Conditions Typ. Unit OFF state Power down 20 uA Sleep (USB disconnected) @DRX=2 3.58 mA Sleep (USB disconnected) @DRX=5 2.46 mA Sleep (USB disconnected) @DRX=9 2.13 mA Sleep (USB disconnected) @DRX=6 2.99 mA Sleep (USB disconnected) @DRX=7 2.35 mA Sleep (USB disconnected) @DRX=8 2.01 mA Sleep (USB disconnected) @DRX=9 1.85 mA Sleep (USB disconnected) @DRX=5 5.
Smart LTE Module Series SC20 Hardware Design WCDMA voice call GPRS data transfer SC20_Hardware_Design GSM850 PCL=12 @19.15dBm 134.7 mA GSM850 PCL=19 @5.31dBm 109.2 mA EGSM900 PCL=5 @33.07dBm 271.2 mA EGSM900 PCL=12 @19.53dBm 137.3 mA EGSM900 PCL=19 @5.59dBm 110.6 mA DCS1800 PCL=0 @30.00dBm 203.0 mA DCS1800 PCL=7 @16.45dBm 150.7 mA DCS1800 PCL=15 @0.67dBm 130.8 mA PCS1900 PCL=0 @29.72dBm 195.9 mA PCS1900 PCL=7 @16.72dBm 151.3 mA PCS1900 PCL=15 @0.98dBm 130.
Smart LTE Module Series SC20 Hardware Design EDGE data transfer SC20_Hardware_Design GPRS900 (4UL/1DL) @29.93dBm 599.2 mA DCS1800 (1UL/4DL) @29.96dBm 205.8 mA DCS1800 (2UL/3DL) @29.86dBm 314.3 mA DCS1800 (3UL/2DL) @29.73dBm 420.8 mA DCS1800 (4UL/1DL) @29.63dBm 531.7 mA PCS1900 (1UL/4DL) @29.77dBm 199.3 mA PCS1900 (2UL/3DL) @29.64dBm 307.2 mA PCS1900 (3UL/2DL) @29.54dBm 411.5 mA PCS1900 (4UL/1DL) @29.34dBm 518.7 mA EDGE850 (1UL/4DL) @26.75dBm 172.2 mA EDGE850 (2UL/3DL) @27.
Smart LTE Module Series SC20 Hardware Design WCDMA data transfer LTE data transfer SC20_Hardware_Design PCS1900 (1UL/4DL) @26.14dBm 171.0 mA PCS1900 (2UL/3DL) @26.11dBm 260.5 mA PCS1900 (3UL/2DL) @26.11dBm 349.6 mA PCS1900 (4UL/1DL) @25.70dBm 442.3 mA Band 1 (HSDPA) @22.43dBm 503.8 mA Band 5 (HSDPA) @22.23dBm 471.6 mA Band 8 (HSDPA) @22.24dBm 481.6 mA Band 1 (HSUPA) @22.30dBm 504.6 mA Band 5 (HSUPA) @21.93dBm 460.5 mA Band 8 (HSUPA) @21.90dBm 464.8 mA LTE-FDD Band1 @23.
Smart LTE Module Series SC20 Hardware Design Table 45: SC20-A Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down 20 uA Sleep USB disconnected) @DRX=2 4.08 mA Sleep (USB disconnected) DRX=5 3.10 mA Sleep (USB disconnected) DRX=9 2.77 mA Sleep (USB disconnected) DRX=6 3.86 mA Sleep (USB disconnected) DRX=7 2.90 mA Sleep (USB disconnected) DRX=8 2.55 mA Sleep (USB disconnected) DRX=9 2.43 mA Sleep (USB disconnected) DRX=5 6.
Smart LTE Module Series SC20 Hardware Design @23.40dBm GPRS data transfer EDGE data transfer WCDMA data transfer SC20_Hardware_Design Band 4 (max power) @23.20dBm 561.35 mA Band 5 (max power) @23.47dBm 558.00 mA Band 8 (max power) @23.5dBm 557.10 mA GPRS850 (1UL/4DL) @32.18dBm 254.50 mA GPRS850 (2UL/3DL) @32.00dBm 410.70 mA GPRS850 (3UL/2DL) @30.43dBm 496.10 mA GPRS850 (4UL/1DL) @29.37dBm 573.90 mA PCS1900 (1UL/4DL) @29.13dBm 198.70 mA PCS1900 (2UL/3DL) @29.19dBm 306.
Smart LTE Module Series SC20 Hardware Design LTE data transfer Band 2 (HSDPA) @22.44dBm 535.10 mA Band 4 (HSDPA) @22.23dBm 523.07 mA Band 5 (HSDPA) @22.38dBm 513.13 mA Band 8 (HSDPA) @22.47dBm 512.30 mA Band 1 (HSUPA) @22.2dBm 516.00 mA Band2 (HSUPA) @22.4dBm 545.60 mA Band 4 (HSUPA) @21.93dBm 527.93 mA Band 5 (HSUPA) @22.26dBm 528.94 mA Band 8 (HSUPA) @22 dBm 507.70 mA LTE-FDD Band2 @23.05dBm 710.01 mA LTE-FDD Band4 @23.3dBm 736.50 mA LTE-FDD Band5 @23.13dBm 626.
Smart LTE Module Series SC20 Hardware Design current WCDMA supply current LTE-FDD supply current LTE-TDD supply current GSM voice call SC20_Hardware_Design DRX=2 Sleep (USB disconnected) DRX=5 TBD mA Sleep (USB disconnected) DRX=9 TBD mA Sleep (USB disconnected) DRX=6 TBD mA Sleep (USB disconnected) DRX=7 TBD mA Sleep (USB disconnected) DRX=8 TBD mA Sleep (USB disconnected) DRX=9 TBD mA Sleep (USB disconnected) DRX=5 TBD mA Sleep (USB disconnected) DRX=6 TBD mA Sleep (USB disco
Smart LTE Module Series SC20 Hardware Design WCDMA voice call GPRS data transfer SC20_Hardware_Design PCS1800 PC=L0 @29.93dBm 202 mA PCS1800 PCL=7 @16.29dBm 152 mA PCS1800 PCL=15 @0.62dBm 131 mA PCS1900 PC=L0 @29.67dBm 194 mA PCS1900 PCL=7 @16.74dBm 149 mA PCS1900 PCL=15 @1.09dBm 130 mA Band 1 (max power) @23.33dBm 561 mA Band 2 (max power) @23.51dBm 521 mA Band 5 (max power) @23.37dBm 551 mA Band 8 (max power) @23.38dBm 478 mA GPRS850 (1UL/4DL) @32.
Smart LTE Module Series SC20 Hardware Design EDGE data transfer SC20_Hardware_Design DCS1800 (4UL/1DL) @29.34dBm 530 mA PCS1900 (1UL/4DL) @29.58dBm TBD mA PCS1900 (2UL/3DL) @29.48dBm TBD mA PCS1900 (3UL/2DL) @29.31dBm TBD mA PCS1900 (4UL/1DL) @29.40dBm TBD mA EDGE850 (1UL/4DL) @26.70dBm TBD mA EDGE850 (2UL/3DL) @27.02dBm 300 mA EDGE850 (3UL/2DL) @26.60dBm 389 mA EDGE850 (4UL/1DL) @26.33dBm 457 mA GSM900 (1UL/4DL) @26.87dBm 178 mA GSM900 (2UL/3DL) @27.
Smart LTE Module Series SC20 Hardware Design WCDMA data transfer LTE data transfer Band 1 (HSDPA) @23.02dBm 517 mA Band 2 (HSDPA) @23.11dBm 550 mA Band 5 (HSDPA) @22.68dBm 486 mA Band 8 (HSDPA) @22.72dBm 466 mA Band 1 (HSUPA) @22.39dBm 521 mA Band2 (HSUPA) @23.19dBm 509 mA Band 5 (HSUPA) @22.44dBm 503 mA Band 8 (HSUPA) @22.25dBm 474 mA LTE-FDD Band1 @23.37dBm 698 mA LTE-FDD Band3 @23.06dBm 709 mA LTE-FDD Band5 @23.25dBm 643 mA LTE-FDD Band7 @22.
Smart LTE Module Series SC20 Hardware Design DRX=8 LTE-FDD supply current LTE-TDD supply current WCDMA voice call WCDMA data transfer SC20_Hardware_Design Sleep (USB disconnected) DRX=9 TBD mA Sleep (USB disconnected) DRX=5 TBD mA Sleep (USB disconnected) DRX=6 TBD mA Sleep (USB disconnected) DRX=7 TBD mA Sleep (USB disconnected) DRX=8 TBD mA Sleep (USB disconnected) DRX=5 TBD mA Sleep (USB disconnected) DRX=6 TBD mA Sleep (USB disconnected) DRX=7 TBD mA Sleep (USB disconnected
Smart LTE Module Series SC20 Hardware Design LTE data transfer Band 19 (HSUPA) @22.10dBm TBD mA LTE-FDD Band1 @23.64dBm TBD mA LTE-FDD Band3 @23.52dBm TBD mA LTE-FDD Band8 @23.40dBm 637 mA LTE-FDD Band18 @23.45dBm TBD mA LTE-FDD Band19 @23.42dBm TBD mA LTE-FDD Band26 @23.36dBm TBD mA LTE-TDD Band41 @23.23dBm 451 mA 7.6. RF Output Power The following table shows the RF output power of SC20 module. Table 48: RF Output Power Frequency Max. Min.
Smart LTE Module Series SC20 Hardware Design WCDMA Band8 24dBm+1/-3dB <-49dBm WCDMA Band19 24dBm+1/-3dB <-49dBm CDMA BC0 24dBm+3/-1dB <-49dBm TD-SCDMA Band34 24dBm+1/-3dB <-49dBm TD-SCDMA Band39 24dBm+1/-3dB <-49dBm LTE-FDD B1 23dBm±2dB <-39dBm LTE-FDD B2 23dBm±2dB <-39dBm LTE-FDD B3 23dBm±2dB <-39dBm LTE-FDD B4 23dBm±2dB <-39dBm LTE-FDD B5 23dBm±2dB <-39dBm LTE-FDD B7 23dBm±2dB <-39dBm LTE-FDD B8 23dBm±2dB <-39dBm LTE-FDD B12 23dBm±2dB <-39dBm LTE-FDD B13 23dBm±2dB
Smart LTE Module Series SC20 Hardware Design NOTE In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. This design conforms to the GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1. 7.7. RF Receiving Sensitivity The following table shows the RF receiving sensitivity of SC20 module. Table 49: SC20-CE R1.1 RF Receiving Sensitivity Primary Receive Sensitivity (Typ.
Smart LTE Module Series SC20 Hardware Design Table 50: SC20-E RF Receiving Sensitivity Frequency -109dBm GSM850 Primary NA Receive Sensitivity (Typ.) Diversity SIMO 3GPP (SIMO) -109dBm NA NA -102dBm EGSM900 -109dBm NA NA -102dBm DCS1800 -109dBm NA NA -102dBm PCS1900 -109dBm NA NA -102dBm WCDMA Band1 -110dBm NA NA -106.7dBm WCDMA Band5 -110dBm NA NA -104.7dBm WCDMA Band8 -110dBm NA NA -103.7dBm LTE-FDD B1 (10M) -98dBm -99dBm -102dBm -96.
Smart LTE Module Series SC20 Hardware Design WCDMA Band4 -110dBm NA NA -106.7dBm WCDMA Band5 -110dBm NA NA -104.7dBm WCDMA Band8 -110dBm NA NA -103.7dBm LTE-FDD B2 (10M) -98dBm -99dBm -102dBm -94.3dBm LTE-FDD B4 (10M) -97dBm -98dBm -101dBm -96.3dBm LTE-FDD B5 (10M) -99.5dBm -99.5dBm -102.5dBm -94.3dBm LTE-FDD B7 (10M) -97dBm -99dBm -100dBm -94.3dBm LTE-FDD B12 (10M) -97.5dBm -98.5dBm -101dBm -93.3dBm LTE-FDD B13 (10M) -99dBm -99dBm -101dBm -93.
Smart LTE Module Series SC20 Hardware Design LTE-FDD B7 (10M) -97dBm -99dBm -100.6dBm -94.3dBm LTE-FDD B8 (10M) -98dBm -100dBm -102dBm -93.3dBm LTE-FDD B28 (10M) -97.5dBm -100dBm -101.8dBm -94.8dBm LTE-TDD B40 (10M) -97dBm -98dBm -100.7dBm -96.3dBm Table 53: SC20-J RF Receiving Sensitivity Primary Receive Sensitivity (Typ.) Diversity SIMO 3GPP (SIMO) WCDMA Band1 -110dBm NA NA -106.7dBm WCDMA Band6 -110dBm NA NA -106.7dBm WCDMA Band8 -110dBm NA NA -103.
Smart LTE Module Series SC20 Hardware Design 7.8. Electrostatic Discharge The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the module electrostatic discharge characteristics.
Smart LTE Module Series SC20 Hardware Design 8 Mechanical Dimensions This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm). The tolerances for dimensions without tolerance values are ±0.05mm. 8.1.
Smart LTE Module Series SC20 Hardware Design Figure 43: Module Bottom Dimensions (Top View) SC20_Hardware_Design Confidential / Released 8-107 / 122
Smart LTE Module Series SC20 Hardware Design 8.2. Recommended Footprint Figure 44: Recommended Footprint (Top View) NOTES 1. 2. For easy maintenance of the module, keep about 3mm between the module and other components on host PCB. All RESERVED pins should be kept open and MUST NOT be connected to ground.
Smart LTE Module Series SC20 Hardware Design 8.3. Top and Bottom Views of the Module Figure 45: Top View of the Module Figure 46: Bottom View of the Module NOTE These are design effect drawings of SC20 module. For more accurate pictures, please refer to the module that you get from Quectel.
Smart LTE Module Series SC20 Hardware Design 9 Storage, Manufacturing and Packaging 9.1. Storage SC20 is stored in a vacuum-sealed bag. The storage restrictions are shown as below. 1. Shelf life in the vacuum-sealed bag: 12 months at < 40ºC/90%RH. 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be: Mounted within 168 hours at the factory environment of ≤30ºC/60%RH. Stored at <10%RH. 3.
Smart LTE Module Series SC20 Hardware Design 9.2. Manufacturing and Soldering Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm. For more details, please refer to document [3].
Smart LTE Module Series SC20 Hardware Design Figure 48: Reflow Soldering Thermal Profile SC20_Hardware_Design Confidential / Released 9-112 / 122
Smart LTE Module Series SC20 Hardware Design 9.3. Packaging SC20 is packaged in tape and reel carriers. Each reel is 12.32m long and contains 200 modules. The following figures show the package details, measured in mm.
Smart LTE Module Series SC20 Hardware Design Table 55: Reel Packaging Model Name MOQ for MP Minimum Package: 200pcs Minimum Package × 4=800pcs SC20 200 Size: 370mm × 350mm × 85mm N.W: 1.92kg G.W: 3.17kg Size: 380mm × 365mm × 365mm N.W: 7.68kg G.W: 13.
Smart LTE Module Series SC20 Hardware Design 10 Appendix A References Table 56: Related Documents SN Document Name Remark [1] Quectel_Smart_EVB_User_Guide Smart EVB user guide [2] Quectel_SC20_Reference_Design SC20 reference design [3] Quectel_Module_Secondary_SMT_User_Guide Module secondary SMT user guide [4] Quectel_RF_Layout_Application_Note RF layout application note Table 57: Terms and Abbreviations Abbreviation Description ADC Analog-to-Digital Converter AMR Adaptive Multi-rate A
Smart LTE Module Series SC20 Hardware Design DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Extended GSM900 band (includes standard GSM900 band) eSCD Enhanced Synchronous Connection Oriented ESD Electrostatic Discharge FR Full Rate FPC Flexible Printed Circuit GMSK Gaussian Minimum Shift Keying GPS Global Positioning System GSM Global System for Mobile Communications HR Half Rate HSPA High Speed Packet Access I/O Input/Output IMEI International Mobile Equipment Identi
Smart LTE Module Series SC20 Hardware Design PPP Point-to-Point Protocol PSK Phase Shift Keying QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying RF Radio Frequency RHCP Right Hand Circularly Polarized RMS Root Mean Square (value) RTC Real Time Clock Rx Receive SDIO Secure Digital Input and Output SIM Subscriber Identification Module SMS Short Message Service TDMA Time Division Multiple Access TE Terminal Equipment TP Touch Panel TX Transmitting Direction
Smart LTE Module Series SC20 Hardware Design VIHmin Minimum Input High Level Voltage Value VILmax Maximum Input Low Level Voltage Value VILmin Minimum Input Low Level Voltage Value VImax Absolute Maximum Input Voltage Value VImin Absolute Minimum Input Voltage Value VOHmax Maximum Output High Level Voltage Value VOHmin Minimum Output High Level Voltage Value VOLmax Maximum Output Low Level Voltage Value VOLmin Minimum Output Low Level Voltage Value VSWR Voltage Standing Wave Ratio WCDMA
Smart LTE Module Series SC20 Hardware Design 11 Appendix B GPRS Coding Schemes Table 58: Description of Different Coding Schemes Scheme CS-1 CS-2 CS-3 C4-4 Code Rate 1/2 2/3 3/4 1 USF 3 3 3 3 Pre-coded USF 3 6 6 12 Radio Block excl.USF and BCS 181 268 312 428 BCS 40 16 16 16 Tail 4 4 4 - Coded Bits 456 588 676 456 Punctured Bits 0 132 220 - Data Rate Kb/s 9.05 13.4 15.6 21.
Smart LTE Module Series SC20 Hardware Design 12 Appendix C GPRS Multi-slot Classes Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots.
Smart LTE Module Series SC20 Hardware Design 15 5 5 NA 16 6 6 NA 17 7 7 NA 18 8 8 NA 19 6 2 NA 20 6 3 NA 21 6 4 NA 22 6 4 NA 23 6 6 NA 24 8 2 NA 25 8 3 NA 26 8 4 NA 27 8 4 NA 28 8 6 NA 29 8 8 NA 30 5 1 6 31 5 2 6 32 5 3 6 33 5 4 6 SC20_Hardware_Design Confidential / Released 12-121 / 122
Smart LTE Module Series SC20 Hardware Design 13 Appendix D EDGE Modulation and Coding Schemes Table 60: EDGE Modulation and Coding Schemes Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot CS-1 GMSK / 9.05kbps 18.1kbps 36.2kbps CS-2 GMSK / 13.4kbps 26.8kbps 53.6kbps CS-3 GMSK / 15.6kbps 31.2kbps 62.4kbps CS-4 GMSK / 21.4kbps 42.8kbps 85.6kbps MCS-1 GMSK C 8.80kbps 17.60kbps 35.20kbps MCS-2 GMSK B 11.2kbps 22.4kbps 44.8kbps MCS-3 GMSK A 14.