Product Info
Table Of Contents
- About the Document
- Contents
- Table Index
- Figure Index
- 1Introduction
- 2Product Concept
- 3Application Interfaces
- 3.1.General Description
- 3.2.Pin Assignment
- 3.3.Pin Description
- 3.4.Power Supply
- 3.5.Turn on and off Scenarios
- 3.6.VRTC Interface
- 3.7.Power Output
- 3.8.Battery Charge and Management
- 3.9.USB Interface
- 3.10.UART Interfaces
- 3.11.(U)SIM Interfaces
- 3.12.SD Card Interface
- 3.13.GPIO Interfaces
- 3.14.I2C Interfaces
- 3.15.ADC Interfaces
- 3.16.Motor Drive Interface
- 3.17.LCM Interface
- 3.18.Touch Panel Interface
- 3.19.Camera Interfaces
- 3.20.Sensor Interfaces
- 3.21.Audio Interfaces
- 3.22.Emergency Download Interface
- 4Wi-Fi and BT
- 5GNSS
- 6Antenna Interface
- 7Electrical, Reliability and Radio Characteristics
- 8Mechanical Dimensions
- 9Storage, Manufacturing and Packaging
- 10Appendix A References
- 11Appendix B GPRS Coding Schemes
- 12Appendix C GPRS Multi-slot Classes
- 13Appendix D EDGE Modulation and Coding Schemes
Smart LTE Module Series
SC20 Hardware Design
SC20_Hardware_Design Confidential / Released
3-35
/ 122
Figure 4: Star Structure of the Power Supply
3.4.3. Reference Design for Power Supply
The power design for the module is very important, as the performance of module largely depends on the
power source. The power supply of SC20 should be able to provide sufficient current up to 3A at least. If
the voltage drop between the input and output is not too high, it is suggested to use an LDO to supply
power for the module. If there is a big voltage difference between the input source and the desired output
(VBAT), a buck converter is preferred to be used as the power supply.
The following figure shows a reference design for +5V input power source which adopts an LDO
(MIC29302WU) from MICREL. The typical output voltage is 3.8V and the maximum load current is 3.0A.
Figure 5: Reference Circuit of Power Supply