Product Manual

10
switches to battery operation. After AC power becomes available on AC-in-1, the load on AC-out-2 will be
reconnected with a delay of approximately 2 minutes. This to allow a genset to stabilise
9.5 Optional Connections
A number of optional connections are possible:
9.5.1 Remote Control
The product can be remotely controlled in two ways.
With an external switch (connection terminal M, see Appendix A). Operates only if the switch on the device is
set to "on".
With a Digital Multi Control panel (connected to one of the two RJ45 sockets L, see Appendix A). Operates only
if the switch on the device is set to "on"
The Digital Multi Control panel has a rotary knob with which the maximum current of the AC input can be set: see
PowerControl and PowerAssist.
9.5.2 Programmable relay
The product is equipped with a programmable relay.
The relay can be programmed for all kinds of other applications, for example as a starter relay for a generator.
9.5.3 Programmable analog/digital input/output ports
The product is equipped with 2 analog/digital input/output ports.
These ports can be used for several purposes. One application is communication with the BMS of a lithium-ion battery.
9.5.4 Voltage sense (connection terminal J, see Appendix A)
For compensating possible cable losses during charging, two sense wires can be connected with which the voltage
directly on the battery or on the positive and negative distribution points can be measured. Use wire with a cross-section
of 0,75mm².
During battery charging, the inverter/charger will compensate the voltage drop over the DC cables up to a maximum of 1
Volt (i.e. 1V over the positive connection and 1V over the negative connection). If the voltage drop threatens to become
larger than 1V, the charging current is limited in such a way that the voltage drop remains limited to 1V.
9.5.5 Temperature sensor (connection terminal J, see Appendix A)
For temperature-compensated charging, the temperature sensor (supplied with the inverter/charger) can be connected.
The sensor is isolated and must be fitted to the negative terminal of the battery.
9.5.6 Parallel Connection
It is required to use identical units for three phase and parallel systems. In this case, as only one GX device is allowed
per system, if you wish to parallel and/or three phase with this product, you must find the same model MultiPlus-II to pair.
To assist with finding identical units, consider instead using MultiPlus-II for parallel and three phase systems, and an
external GX device.
Up to six units can be connected in parallel. When connecting this product with MultiPlus-II in a parallel system, the
following requirements must be met:
WARNING
It is essential the negative battery terminal between the units is always connected. A fuse or circuit breaker is
not allowed on the negative.
All units must be connected to the same battery.
A maximum of six units connected in parallel.
The devices must be identical (aside from GX part) and have the same firmware.
The DC connection cables to the devices must be of equal length and cross-section.
If a positive and a negative DC distribution point is used, the cross-section of the connection between the
batteries and the DC distribution point must at least equal the sum of the required cross-sections of the
connections between the distribution point and the units.
Always interconnect the negative battery cables before placing the UTP cables.
Place the units close to each other, but allow at least 10cm for ventilation purposes under, above and beside
the units.
UTP cables must be connected directly from one unit to the other (and to the remote panel). Connection or
splitter boxes are not permitted.