User guide
Table Of Contents
- Contents
- 1. About This MegaCore Function Suite
- Release Information
- Device Family Support
- Features
- Design Example
- Performance and Resource Utilization
- 2D FIR Filter
- 2D Median Filter
- Alpha Blending Mixer
- Avalon-ST Video Monitor
- Chroma Resampler
- Clipper
- Clocked Video Input
- Clocked Video Output
- Color Plane Sequencer
- Color Space Converter
- Control Synchronizer
- Deinterlacer
- Deinterlacer II
- Frame Buffer
- Gamma Corrector
- Interlacer
- Scaler
- Scaler II
- Switch
- Test Pattern Generator
- Trace System
- 2. Getting Started with Altera IP Cores
- 3. Interfaces
- Interface Types
- Avalon-ST Video Protocol
- Avalon-MM Slave Interfaces
- Avalon-MM Master Interfaces
- Buffering of Non-Image Data Packets in Memory
- 4. 2D FIR Filter MegaCore Function
- 5. 2D Median Filter MegaCore Function
- 6. Alpha Blending MegaCore Function
- 7. Avalon-ST Video Monitor MegaCore Function
- 8. Chroma Resampler MegaCore Function
- 9. Clipper MegaCore Function
- 10. Clocked Video Input MegaCore Function
- 11. Clocked Video Output MegaCore Function
- 12. Color Plane Sequencer MegaCore Function
- 13. Color Space Converter MegaCore Function
- 14. Control Synchronizer MegaCore Function
- 15. Deinterlacer MegaCore Function
- Core Overview
- Functional Description
- Parameter Settings
- Signals
- Control Register Maps
- 16. Deinterlacer II MegaCore Function
- 17. Frame Reader MegaCore Function
- 18. Frame Buffer MegaCore Function
- 19. Gamma Corrector MegaCore Function
- 20. Interlacer MegaCore Function
- 21. Scaler MegaCore Function
- 22. Scaler II MegaCore Function
- 23. Switch MegaCore Function
- 24. Test Pattern Generator MegaCore Function
- 25. Trace System MegaCore Function
- A. Avalon-ST Video Verification IP Suite
- B. Choosing the Correct Deinterlacer
- Additional Information

2–4 Chapter 2: Getting Started with Altera IP Cores
Generated Files
Video and Image Processing Suite January 2013 Altera Corporation
User Guide
1 The Finish button may be unavailable until all parameterization errors
listed in the messages window are corrected.
8. Click Yes if you are prompted to add the Quartus II IP File (.qip) to the current
Quartus II project. You can also turn on Automatically add Quartus II IP Files to
all projects.
You can now integrate your custom IP core instance in your design, simulate, and
compile. While integrating your IP core instance into your design, you must make
appropriate pin assignments. You can create a virtual pin to avoid making specific pin
assignments for top-level signals while you are simulating and not ready to map the
design to hardware.
For some IP cores, the generation process also creates complete example designs. An
example design for hardware testing is located in the
<variation_name>_example_design/example_project/ directory. An example design
for RTL simulation is located in the <variation_name>_example_design/simulation/
directory.
1 For information about the Quartus II software, including virtual pins and the
MegaWizard Plug-In Manager, refer to Quartus II Help.
Simulate the IP Core
You can simulate your IP core variation with the functional simulation model and the
testbench or example design generated with your IP core. The functional simulation
model and testbench files are generated in a project subdirectory. This directory may
also include scripts to compile and run the testbench.
For a complete list of models or libraries required to simulate your IP core, refer to the
scripts provided with the testbench.
For more information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.
Generated Files
Table 2–1 describes the generated files and other files that may be in your project
directory.
The names and types of files vary depending on the variation name and HDL type
you specify during parameterization For example, a different set of files are created
based on whether you create your design in Verilog HDL or VHDL.